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DRINFELD ASSOCIATORS, BRAID GROUPS AND EXPLICITSOLUTIONS OF THE KASHIWARA�VERGNE EQUATIONSA. ALEKSEEV, B. ENRIQUEZ, AND C. TOROSSIANAbstrat. The Kashiwara�Vergne (KV) onjeture states the existene of solutions ofa pair of equations related with the Campbell�Baker�Hausdor� series. It was solved byMeinrenken and the �rst author over R, and in a formal version, by the �rst and lastauthors over a �eld of harateristi 0. In this paper, we give a simple and expliit formulafor a map from the set of Drinfeld assoiators to the set of solutions of the formal KVequations. Both sets are torsors under the ations of prounipotent groups, and we showthat this map is a morphism of torsors. When speialized to the KZ assoiator, ouronstrution yields a solution over R of the original KV onjeture.IntrodutionIn [KV℄, M. Kashiwara and M. Vergne formulated a onjeture on the form of theCampbell�Baker�Hausdor� (CBH) series. This onjeture triggered the work of severalauthors (for a review see [T2℄). In partiular, Kashiwara�Vergne settled it for solvableLie algebras ([KV℄), Rouvière gave a proof for sl2 ([R℄), and Vergne ([V℄) and Alekseev�Meinrenken ([AM1℄) proved it for quadrati Lie algebras. All these onstrutions lead toexpliit rational formulas for solutions of the KV onjeture. The general ase was settled inthe positive by Alekseev�Meinrenken ([AM2℄) using Kontsevih's deformation quantizationtheory and results in [T1℄. The orresponding solution is de�ned over R, and expresses asan in�nite series where oe�ients are ombinations of Kontsevih integrals on on�gurationspaes and integrals over simplies. The values of most of these oe�ients remain unknown.Later, the �rst and last authors gave another proof ([AT℄), based on Drinfeld's theory ofassoiators. In that paper, the Kashiwara�Vergne (KV) onjeture was reformulated as theproblem of onstruting speial automorphisms of the free Lie algebra with two generatorswith oboundary Jaobian (see Setion 2); the authors also showed that eah assoiatorgives rise to an a�ne line of suh automorphisms. The solution is de�ned as a nonabelianohain with oboundary equal to the assoiator. Suh a onstrution is inspired by thetheory of quantization of Lie bialgebras, and the existene problem is solved by showing thatobstrutions vanish in all degrees.The purpose of the present work is to give a diret onstrution of the map M1(k) →
SolKV(k), Φ 7→ µΦ from assoiators to solutions of the KV equations (we work over a �eld
k of harateristi 0). Namely, for Φ ∈M1(k), µΦ is the automorphism of the topologiallyfree Lie algebra generated by x, y given by(1)
µΦ : x 7→ Φ(x,−x−y)xΦ(x,−x−y)−1, y 7→ e−(x+y)/2Φ(y,−x−y)yΦ(y,−x−y)−1e(x+y)/2.Our main result (Theorem 2.1) is the identity(2) Φ(t12, t23) ◦ µ

12,3
Φ ◦ µ1,2

Φ = µ1,23
Φ ◦ µ2,3

Φ .This identity implies that the Jaobian of µΦ is a oyle, and therefore a oboundaryaording to ohomology omputations in [AT℄; it an then be expressed using the Γ-funtion
ΓΦ of Φ (see [DT, E℄). Identity (2) also implies that µΦ is speial, i.e., satis�es(3) µΦ(log(exey)) = x+ y1
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2 A. ALEKSEEV, B. ENRIQUEZ, AND C. TOROSSIAN(see Subsetion 5.2 and also Proposition 7.4 in [AT℄); we also give a diret proof of (3) basedon the hexagon and duality identities satis�ed by Φ. The onjuntion of (3) and of the fatthat the Jaobian of µΦ is a oboundary atually means that µΦ is a solution of the KVequations introdued in [AT℄.The a�ne line of solutions of the KV equations attahed in [AT℄ to Φ then takes theform {Inn(es(x+y)) ◦ µΦ, s ∈ k}, where Inn(g) = (u 7→ gug−1). It remains an open questionwhether all the solutions of the KV equation are of this form.The strategy for proving (2) is as follows. For eah assoiator Φ and eah parenthe-sization O of a word in n idential letters (the letter is •), Drinfeld and Bar-Natan de�nean isomorphism µ̃O
Φ : PBn(k) → exp(̂tn) from the prounipotent ompletion of the purebraid group with n strands to the group assoiated with the holonomy Lie algebra. Notethat PBn ontains the free group Fn−1 as a normal subgroup, while tn ontains the freeLie algebra fn−1 as an ideal; we show that the above isomorphisms restrit to isomorphisms

µO
Φ : Fn−1(k)→ exp(̂fn−1) (in the ase of the left parenthesization, this was proved in [HM℄).We note that µΦ may be interpreted as the isomorphism F2(k)→ exp(̂f2) orresponding to
•(••), so µΦ = µ•(••) (we write µO instead of µO

Φ when no onfusion is possible). We thenshow the identity(4) µO(i) = µ1,2,...,ii+1,...,n
O ◦ µi,i+1

•(••),where O is a parenthesized word of length n and O(i) is the parenthesized word obtainedfrom it by replaing the (i+ 1)th letter • by (••). Applying this identity to O = •(••) with
i = 1, 2 and using the identity µO′

Φ = Ad(ΦO,O′) ◦ µO
Φ relating the various µO

Φ , we obtain (2).We then study the torsor aspets of the map Φ 7→ µΦ. While M1(k) is a torsor underthe ommuting ations of the groups GT1(k) and GRT1(k), SolKV(k) is a torsor under theations of groups KV(k) and KRV(k). We prove that Φ 7→ µΦ is a morphism of torsors, i.e.,there exist group morphisms GT1(k)→ KV(k), f 7→ αf and GRT1(k)→ KRV(k), g 7→ ag,ompatible with the ations (the Lie algebra version of the latter morphism was alreadyonstruted in [AT℄). We give a diret proof of these fats, based on the nonemptiness of
M1(k) (a result in [Dr℄); we also sketh an independent proof of αf ∈ KV(k); its mainingredient is the identity(5) Ad f(x12, x23) ◦ α

f12,3
f ◦ α1,2

f = α1,f23
f ◦ α2,3

f .A similar independent proof of ag ∈ KRV(k) may be given based on
Ad g(t12, t23) ◦ a

12,3
g ◦ a1,2

g = a1,23
g ◦ a2,3

g .It an be proved using the tehniques of [AT℄ that the sets of solutions of both equations area�ne lines, and our result gives expliit formulas for these solutions. We also observe that (5)an be generalized to the pro�nite and pro-l setups (i.e., we have morphisms ĜT→ Aut(F̂2)and GTl → Aut((F2)l), f 7→ αf , and (5) takes plae in Aut(F̂3) or Aut((F3)l)).Formula (4) and its analogue (5) then enable us to ompute the Jaobians of µO
Φ :

Fn−1(k)→ exp(fn−1) and αO
f ∈ Aut(Fn−1(k)), where O is an arbitrary parenthesized word,

Φ ∈M1(k), f ∈ GT1(k), in terms of in terms of ΓΦ and of the `Γ-funtion' of f .Finally, we show that speializing our onstrution to the Knizhnik�Zamolodhikov (KZ)assoiator yields an expliit solution of the original KV onjeture, where the Lie series arerequired to onverge for any �nite dimensional Lie algebra and the Du�o series is requiredto oinide with the generating series of Bernoulli numbers.Aknowledgements. We are grateful to V.G. Drinfeld and to D. Bar-Natan who posedthe question of how to onstrut expliit solutions of the KV problem in terms of assoiators.The formula for µΦ as well as the proof of equation (3) were suggested to us by D. Calaque.We would like to thank G. Massuyeau for disussions and for pointing out referene [HM℄.
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4 A. ALEKSEEV, B. ENRIQUEZ, AND C. TOROSSIANReferenes 321. Preliminary resultsIn this setion, we reall the notions of tangential derivations and automorphisms of freeLie algebras, their divergene and Jaobian oyles, the ations of pure braid groups (resp.,in�nitesimal braid Lie algebras) on free groups Lie algebras by tangential automorphisms(resp., derivations), and simpliial morphisms between these objets.1.1. Tangential automorphisms, the Jaobian oyle, and omplexes. Let fn bethe free Lie algebra with generators x1, ..., xn, f̂n its degree ompletion (where the generators
xk have degree 1). For u1, ..., un ∈ fn, we denote by [[u1, ..., un]] the derivation of fn given by
xk 7→ [uk, xk]. In this way, we de�ne a linear map (fn)n → Der(fn). Its image is a (positively)graded Lie subalgebra tdern of Der(fn); its elements are alled the tangential derivations of
fn. We similarly de�ne tder∧n ⊂ Der(̂fn) as the degree ompletion of tdern; it is a pronilpotentLie algebra.If U1, ..., Un ∈ exp(̂fn), we similarly de�ne [[U1, ..., Un]] as the automorphism of f̂n givenby xk 7→ UkxkU

−1
k . This de�nes a map exp(̂fn)n → Aut(̂fn), whose image is the subgroupof tangential automorphisms TAutn ⊂ Aut(̂fn). The exponential sets up an isomorphism

exp : tder∧n → TAutn.De�ne Tn := An/[An, An] as the quotient of the free assoiative algebra An ≃ U(fn) byits subspae of ommutators; this is the vetor spae spanned by the set of yli words in
x1, ..., xn. Tn is equipped with an ation of Der(fn), indued by the ation of Der(fn) on An.We denote by x 7→ 〈x〉 the anonial projetion map An → Tn. Tn is positively graded andwe denote by T̂n its degree ompletion; it is equipped with ations of Der(̂fn) and Aut(̂fn).One shows that any u ∈ tdern an be written as u = [[u1, ..., un]], where (u1, ..., un) isuniquely determined by the ondition p1(u1) = ... = pn(un) = 0, where pk : fn → k is thelinear map suh that u =

∑
k pk(u)xk modulo [fn, fn].We de�ne simpliial group morphisms TAutn → TAutm as follows. Let1 φ : [m] ⊃

Dφ → [n] be a partially de�ned map, and let (a1, ..., an) ∈ (fn)n be suh that eah akhas vanishing linear term in xk. We set [[a1, ..., an]]φ := [[b1, ..., bm]], where bℓ(x1, ..., xm) :=
aφ(ℓ)(

∑
k∈φ−1(1) xk, ...,

∑
k∈φ−1(n) xk). This formula de�nes a Lie algebra morphism tdern →

tderm, whih indues a group morphism TAutn → TAutm, also denoted x 7→ xφ. We will alsouse the notation xφ = xφ−1(1),...,φ−1(n). For example, [[a1, a2]]
12,3 = [[a1(x1 + x2, x3), a1(x1 +

x2, x3), a2(x1 + x2, x3)]].We also de�ne nonommutative variants of these morphisms as follows. Let φ̃ be a paironsisting of a partially de�ned map φ : [m] ⊃ Dφ → [n] as above and of total orders on eahof the sets φ−1(1), ..., φ−1(n). We de�ne [[a1, ..., an]]φ̃ := [[b̃1, ..., b̃m]], where b̃ℓ(x1, ..., xm) :=
aφ(ℓ)(cbh(xk|k ∈ φ−1(1)), ..., cbh(xk|k ∈ φ−1(n))); here cbh(a1, ..., ap) = log(ea1 ...eap) and
cbh(as|s ∈ S) is de�ned similarly, for S a �nite ordered set. We use the notation xφ̃ =

xφ̃−1(1),...,φ̃−1(n) (where the elements of φ−1(k) are written in inreasing order).We then de�ne a `divergene' map
j : tdern → Tnas follows. Let ∂k : An → An be the linear maps de�ned by the identity x = ǫ(x)1 +∑n

k=1 xk∂k(x) (where ǫ : An → k is the ounit map). We then set
j(u) := 〈

n∑

k=1

xk∂k(uk)〉.1We set [n] := {1, ..., n}.



DRINFELD ASSOCIATORS AND SOLUTIONS OF THE KASHIWARA�VERGNE EQUATIONS 5One an show that j satis�es the oyle identity
j([u, v]) = u · j(v) − v · j(u),where the ation of tdern on Tn is understood in the r.h.s.; j is graded, so it extends to aoyle tder∧n → T̂n. The Lie algebra oyle j gives rise to the `Jaobian' group oyle

J : TAutn → T̂n.

J is uniquely de�ned by the onditions J(id) = 0 and (d/dt)J(etxg)|t=0 = j(x) + x · J(g); asa onsequene, J satis�es the oyle identity J(h ◦ g) = J(h) + h · J(g).The ompatibility of j, J with simpliial maps an be desribed as follows. Any partiallyde�ned [m] ⊃ Dφ
φ
→ [n] gives rise to a Lie algebra morphism fn → fm, x7 → xφ, with

xφ
k :=

∑
ℓ∈φ−1(k) xℓ, and any φ̃ gives rise to a morphism f̂n → f̂m, x 7→ xφ̃, with xφ̃

k =

cbh(xℓ|ℓ ∈ φ−1(k)). These morphisms give rise to linear maps Tn → Tm and T̂n → T̂m.Then one an show that j(uφ) = j(u)φ, J(gφ) = J(g)φ, j(uφ̃) = j(u)φ̃, J(gφ̃) = J(g)φ̃.We de�ne a omplex T1
δ
→ T2

δ
→ T3... by f(x1) 7→ f(x1 +x2)−f(x1)−f(x2) = f12−f1−

f2, f(x1, x2) 7→ f(x1+x2, x3)−f(x1, x2+x3)−f(x2, x3)+f(x1, x2) = f12,3−f1,23−f2,3+f1,2,et. It is proved in [AT℄ that this omplex is ayli in degree 2 (the degree of Ti is i). Thekernel of T1
δ
→ T2 is 1-dimensional, spanned by the lass of x1 ∈ A1 ≃ T1.We similarly de�ne a omplex T̂1

δ̃
→ T̂2

δ̃
→ T̂3... by f(x1) 7→ f(log(ex1ex2)) − f(x1) −

f(x2) = f
f12 − f1 − f2, f(x1, x2) 7→ f(log(ex1ex2), x3) − f(x1, log(ex2ex3)) − f(x2, x3) +

f(x1, x2). It has a dereasing �ltration by the degree, and its assoiated graded is the aboveomplex, so the omplex T̂1
δ̃
→ ... is again ayli in degree 2. Sine log(ex1ex2)−x1−x2 is asum of brakets, Ker(T̂1

δ̃
→ T̂2) is again 1-dimensional, spanned by the lass of x1 ∈ A∧

1 ≃ T̂1.1.2. Braid groups and Lie algebras of in�nitesimal braids. Let Bn be the braid groupof order n. Bn may be viewed as π1(Xn/Sn, Snp), where Xn = {(z1, ..., zn) ∈ Cn|zi 6= ziif i 6= j} and Snp is the Sn-orbit of the set p = {(z1, ..., zn)|zi ∈ R, z1 < ... < zn}. The�bration Xn → Xn/Sn gives rise to the morphism Bn → Sn, and the pure braid group PBnis de�ned as Ker(Bn → Sn), so we have an exat sequene 1→ PBn → Bn → Sn → 1; also
PBn = π1(Xn, p).We reall the Artin presentation of Bn: generators are σ1, ..., σn−1, and relations are givenby

σiσi+1σi = σi+1σiσi+1 (i = 1, ..., n− 2), σiσj = σjσi for |i− j| > 1.We also reall the Coxeter presentation of Sn: generators are s1, ..., sn−1 (si is the permu-tation (i, i + 1)) and relations are the same as those between the σi, with the additionalrelations s2i = 1 (i = 1, ..., n− 1). The morphism Bn → Sn is then given by σi 7→ si.The group PBn admits the following presentation. For i < j (i, j ∈ [n]), set
xij := (σj−2...σi)

−1σ2
j−1(σj−2...σi).The generators xij belong to PBn, and2

(xijxikxjk, xij) = (xijxikxjk, xik) = (xijxikxjk , xjk) = 1 for i < j < k,and
(xij , xkl) = (xil, xjk) = (xik, xjkxjlx

−1
jk ) = 1 for i < j < k < l.One proves that this onstitutes a presentation of PBn, see Figure 1.For any sequene (k1, ..., kn) of integers ≥ 0, there exists a unique morphism PBn →

PBk1+...+kn
onsisting in replaing the �rst strand by k1 onseutive strands, ..., the nthstrand by kn onseutive strands. If we set m := k1 + ... + kn and φ : [m] → [n] is2We set (g, h) := ghg−1h−1.



6 A. ALEKSEEV, B. ENRIQUEZ, AND C. TOROSSIANthe map suh that φ(k1 + ... + ki−1 + [ki]) = i, we denote this morphism by x 7→ xφ̃ =

x1̃...k1,..., ˜k1+...+kn−1+1...m. This morphism in expliitly given by
xij 7→

ր∏

i′∈φ−1(i)

(

ց∏

j′∈φ−1(j)

xi′j′ ),where ∏ր
,
∏ց mean the produt in inreasing and dereasing order of the indies.

1

2

3

X

X

X

12
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23

X

01

02

X03

X

σ

σ

σ
U

V

U V

Product in B_n is from top to bottomGenerators of B_4 Generators of PB_4Figure 1.The Lie algebra tn of in�nitesimal braids is presented by generators tij , i 6= j ∈ [n] andrelations tji = tij , [tij , tik + tjk] = 0 for i, j, k distint and [tij , tkl] = 0 for i, j, k, l distint.For eah partially de�ned map [m] ⊃ Dφ
φ
→ [n], there is a unique Lie algebra morphism

tn → tm, x 7→ xφ given by tφij :=
∑

i′∈φ−1(i),j′∈φ−1(j) ti′j′ (in partiular, we have an ationof Sn on tn). We often write xφ−1(1),...,φ−1(n) instead of xφ. We attribute degree 1 to eahof the generators tij , so the Lie algebra tn is positively graded; we denote by t̂n its degreeompletion.1.3. The morphism tn+1 → tdern. Let us reindex tij , i 6= j ∈ {0, ..., n} the generatorsof tn+1. One heks that there is a unique morphism ad : tn+1 → tdern, de�ned by t0i 7→
(xj 7→ [xi, xj ]) and tij 7→ (xi 7→ [xi, xj ], xj 7→ [xj , xi], xk 7→ 0 for k 6= i, j) if i, j 6= 0. Itexponentiates to Ad : exp(̂tn+1) → TAutn. One heks that j(ad tij) = 0, so the oyleproperty implies j(adx) = J(AdX) = 0 for any x ∈ tn+1 and X ∈ exp(̂tn+1).The morphism ad : tn+1 → tdern may be interpreted as follows. The Lie subalgebra of
tn+1 generated by the elements t0i, i ∈ [n] identi�es with fn under xi 7→ t0i; it is a Lie idealof tn+1. Then ad : tn+1 → Der(fn) an be viewed as the adjoint ation of tn+1 on its Lieideal fn ⊂ tn+1.Note that the morphism tn → tn+1, tij 7→ tij is injetive, so tn may be viewed as a Liesubalgebra of tn+1; then tn+1 identi�es with the semidiret produt fn ⋊ad tn.1.4. The morphism PBn+1 → TAutn. Reindex the generators of PBn+1 as xij , i < j ∈
{0, ..., n}. Let Fn be the free group with generators Xi (i ∈ [n]). Then: (a) the morphism
Fn → PBn+1, Xi 7→ x0i, is injetive; (b) Fn is a normal subgroup in PBn+1. This impliesthat we have an ation Ad : PBn+1 → Aut(Fn) of PBn by automorphisms of Fn.This ation an be made expliit as follows: if i > 0, then

Ad(x0i)(Xj) = XiXjX
−1
i ,



DRINFELD ASSOCIATORS AND SOLUTIONS OF THE KASHIWARA�VERGNE EQUATIONS 7and if 0 < i < j, then
Ad(xij)(Xi) = X−1

j XiXj , Ad(xij)(Xj) = (XiXj)
−1Xj(XiXj),

Ad(xij)(Xk) = Xk for k < i or k > j,

Ad(xij)(Xk) = (X−1
j X−1

i XjXi)Xk(X−1
j X−1

i XjXi)
−1 for i < k < j.This extends to an ation of PBn+1 by automorphisms of Fn(k). Using the isomorphism

Fn(k) ≃ exp(̂fn) given by Xi 7→ exi , we therefore obtain a morphism PBn → Aut(̂fn). Itsimage is ontained in TAutn (sine Adxij belongs to this subgroup and the elements xij gen-erate PBn), and sine TAutn is prounipotent, the universal property of Malev ompletionsimplies that Ad extends to a morphism Ad : PBn(k)→ TAutn.Lemma 1.1. For any g ∈ PBn+1(k), J(Ad g) = 0.Proof. It su�es to show that J(Ad xij) = 0. For any u ∈ Fn(k), J(Innu) = 0 (where
Innu is v 7→ uvu−1) and Ad(x0i) = Inn(Xi), so it su�es to prove that J(InnXj ◦Adxij) =

0 for 0 < i < j. Let θij := InnXj ◦ Ad xij , then θij : Xi 7→ Xi, Xj 7→ X−1
i XjXi,

Xk 7→ XjXkX
−1
j for k < i or k > j, Xk 7→ (X−1

i XjXi)Xk(X−1
i XjXi)

−1 for i < k < j.Let u ⊂ tder∧n be the subspae of all elements [[a1, ..., an]], where aj ∈ kxi, ai = 0, and for
k 6= i, j, ak ∈ f̂n has the form ak(xi, xj) (ak ∈ f̂2). This is a Lie subalgebra in tder∧n , so expmaps it bijetively to a subgroup of TAutn. One heks that exp(u) ⊂ U , where U ⊂ TAutnis the subspae of all [[U1, ..., Un]], where Uj ∈ {e

λxi, λ ∈ k}, Ui = 1, and for k 6= i, j, Uk hasthe form Uk(xi, xj) (Uk ∈ exp(̂f2)), and that U is an algebrai subgroup of TAutn. Therefore
u ⊂ Lie(U). On the other hand, one heks that u oinides with the tangent subspae of Uat the origin, so u = Lie(U). It follows that log takes U to u.All this implies that log θij has the form [[a1, ..., an]], where ai = 0, aj = −xi and for
k 6= i, j, ak ∈ f̂n has the form ak(xi, xj). Then j(log θij) = 0, hene J(θij) = 0, as wanted.

�Note that the quotient group PBn+1 /Fn identi�es with PBn under xij 7→ xij for 0 < i <
j, x0i 7→ 1. We then have an exat sequene 1 → Fn → PBn+1 → PBn → 1. Moreover,this exat sequene admits the splitting PBn → PBn+1, xij 7→ xij . It follows that PBn+1identi�es with the semidiret produt Fn ⋊Ad PBn.Remark 1.2. We will rename x, y (resp., x, y, z, X,Y , X,Y, Z) the generators x1, x2 (resp.,
x1, x2, x3, X,Y , X,Y, Z) of f̂2 (resp., f̂3, F2, F3).2. The main results2.1. The map M1(k) → SolKV(k). Let f̂2 be the topologially free Lie algebra generatedby x, y. Let F2 be the free group with generators X,Y and let F2(k) be its prounipotentompletion; we have an identi�ation F2(k) ≃ exp(̂f2), indued by the morphism F2 →

exp(̂f2) given by X 7→ ex, Y 7→ ey.The set of solutions of the Kashiwara�Vergne equations is (see [KV, AT℄)3 4 5
SolKV(k) :={µ ∈ Iso(F2(k), exp(̂f2))|µ(X) ∼ ex, µ(Y ) ∼ ey, µ(XY ) = ex+y,

and ∃r ∈ u2
k[[u]]|J(µ) = 〈r(x + y)− r(x) − r(y)〉}.Here µ gives rise to an element of TAut2 (using F2(k) ≃ exp(̂f2)) and J(µ) is its Jaobian.As the kernel of T1 → T2 is equal to ku, r is uniquely determined by µ ∈ SolKV(k), so we3For g, h in a prounipotent group G or its Lie algebra, we use the notation g ∼ h for `g is onjugated to

h', i.e., g = khk−1 for some k ∈ G.4If Γ is a �nitely generated group, we denote by Γ(k) its prounipotent (of Malev) ompletion. Thereis a group morphism Γ → Γ(k) with the universal property that any group morphism Γ → U , with Uprounipotent, extends uniquely to a morphism Γ(k) → U of algebrai groups.5The de�nition given here is equivalent to that of [AT℄ as T1 → T2 → T3 is ayli.



8 A. ALEKSEEV, B. ENRIQUEZ, AND C. TOROSSIANde�ne a map Duf : SolKV(k) → u2
k[[u]], µ 7→ r = Duf(µ); we will all r the Du�o formalseries of µ.The set of assoiators with oupling onstant 1 is

M1(k) := {Φ(t12, t23) ∈ exp(̂t3)|Φ
3,2,1 = Φ−1, et23/2Φ1,2,3et12/2Φ3,1,2et31/2Φ2,3,1 = e(t12+t23+t31)/2,

Φ2,3,4Φ1,23,4Φ1,2,3 = Φ1,2,34Φ12,3,4}.Theorem 2.1. There is a unique map M1(k)→ SolKV(k), Φ 7→ µΦ, suh that6
µΦ(X) = Φ(x,−x− y)exΦ(x,−x− y)−1, µΦ(Y ) = e−(x+y)/2Φ(y,−x− y) · ey · (same)−1.The Jaobian of µΦ an be omputed as follows. In [DT, E℄ (see also [Ih℄), it was proved7that for any Φ(a, b) ∈M1(k), there exists a formal series ΓΦ(u) = e

P

n≥2(−1)nζΦ(n)un/n, suhthat(6) (1 + b∂bΦ(a, b))ab =
ΓΦ(a+ b)

ΓΦ(a)ΓΦ(b)
,where ∂bΦ(a, b) is de�ned as above and x 7→ xab is the abelianization morphism k〈〈a, b〉〉 →

k[[a, b]]The values of the ζΦ(n) for n even are independent of Φ, given by − 1
2 ( u

eu−1 − 1 + u
2 ) =∑

n≥1 ζΦ(2n)u2n, so they are related to Bernoulli numbers by ζΦ(2n) = − 1
2

B2n

(2n)! for n ≥ 1(we have ζΦ(2) = −1/24, ζΦ(4) = 1/1440, et.)Proposition 2.2. J(µΦ) = 〈log ΓΦ(x)+ log ΓΦ(y)− log ΓΦ(x+ y)〉, so Duf(µΦ) = − log ΓΦ.2.2. Torsor aspets. We set
KV(k) := {α ∈ Aut(F2(k))|α(X) ∼ X,α(Y ) ∼ Y, α(XY ) = XY,

and ∃σ ∈ u2
k[[u]]|J(α) = 〈σ(log(exey))− σ(x) − σ(y)〉}and

KRV(k) := {a ∈ Aut(̂f2)|a(x) ∼ x, a(y) ∼ y, a(x+ y) = x+ y,

and ∃s ∈ u2
k[[u]]|J(a) = 〈s(x+ y)− s(x)− s(y)〉}.Here α, a give rise to elements of TAut2 (using F2(k) ≃ exp(̂f2)) and J(α), J(a) are theirJaobians. As before, we will denote Duf : KV(k)→ u2

k[[u]], KRV(k)→ u2
k[[u]] the maps

α 7→ σ, a 7→ s.Proposition 2.3. KV(k) and KRV(k) are groups. SolKV(k) is a torsor under the om-muting left ation of KV(k) and right ation of KRV(k) given by (α, µ) 7→ µ ◦ α−1 and
(µ, a) 7→ a−1 ◦ µ.6If G is a prounipotent group, we use the notation g · h · (same)−1 for ghg−1 for if g ∈ G and h ∈ G or
Lie(G).7The key ingredient in the proof of this result is the statement that the image of grt1 in f′

2
/f′′

2
is spannedby the lasses of the Drinfeld generators. This statement also follows from Theorem 4.1 in [AT℄; indeed, onesees easily that the diagram

f2
ψ 7→〈a∂aψ〉

→ T2

φ 7→φab

→ k[ā, b̄]
↑ ↑
f′
2

→ f′
2
/f′′

2
= āb̄k[ā, b̄]

↑ ↑
grt1 → grt1/grt′

1ommutes (the upper part follows from the fat that f′
2
is freely generated by the (ad a)k(ad b)l([a, b]) andthe bottom part from grt′

1
⊂ f′′

2
); Theorem 4.1 in [AT℄ implies that the image of grt1 → T2 is spanned bythe images of the Drinfeld generators; it follows that the same is true of the image of grt1 → f′

2
/f′′

2
.



DRINFELD ASSOCIATORS AND SOLUTIONS OF THE KASHIWARA�VERGNE EQUATIONS 9In partiular, any element of SolKV(k) gives rise to an isomorphism kv → krv betweenthe Lie algebras of these groups, whose assoiated graded is the anonial identi�ation
gr(kv) ≃ krv.The prounipotent radial of the Grothendiek-Teihmüller group is
GT1(k) = {f(X,Y ) ∈ F2(k)|f(Y,X) = f(X,Y )−1, f(X,Y )f(Y −1X−1, X)f(Y, Y −1X−1) = 1,

f(x23, x34)f(x12x13, x24x34)f(x12, x23) = f(x12, x23x24)f(x13x23, x34)}(the last equation is in PB4(k)) with produt (f1∗f2)(X,Y ) = f1(f2(X,Y )Xf2(X,Y )−1, Y )f2(X,Y ).Its graded version is
GRT1(k) = {g(t12, t23) ∈ exp(̂t3)|g

3,2,1 = g−1, g(A,C)Ag(A,C)−1+g(B,C)Bg(B,C)−1+C = 0

for A+B + C = 0, g1,2,3g3,1,2g2,3,1 = 1, g2,3,4g1,23,4g1,2,3 = g1,2,34g12,3,4}with produt (g1 ∗ g2)(a, b) = g1(g2(a, b)ag2(a, b)
−1, b)g2(a, b) (we set a := t12, b := t23).Proposition 2.4. (see [Dr℄) M1(k) is a torsor under the ommuting left ation of GT1(k)and right ation of GRT1(k) by (f,Φ) 7→ (f ∗Φ)(a, b) := f(Φ(a, b)eaΦ(a, b)−1, eb)Φ(a, b) and

(Φ, g) 7→ (Φ ∗ g)(a, b) := Φ(g(a, b)ag(a, b)−1, b)g(a, b).The following Theorem 2.5 and Proposition 2.6 express torsor properties of the map
Φ 7→ µΦ.Theorem 2.5. There are unique group morphisms GT1(k) → KV(k), f(X,Y ) 7→ α−1

f ,where
αf (X) = f(X,Y −1X−1)Xf(X,Y −1X−1)−1, αf (Y ) = f(Y, Y −1X−1)Y f(Y, Y −1X−1)−1,and GRT1(k)→ KRV1(k), g(a, b) 7→ a−1

g , where
ag(x) = g(x,−x− y)xg(x,−x− y)−1, ag(y) = g(y,−x− y)yg(y,−x− y)−1.These group morphisms are ompatible with the map M1(k)→ SolKV(k), whih is thereforea morphism of torsors.Proposition 2.6. We have a ommuting diagram of torsors

M1(k)
Φ7→µΦ
→ SolKV(k)

Φ7→log ΓΦ↓ ↓Duf

{r ∈ u2
k[[u]]|rev(u) = −u2

24 + u4

1440 ...}
(−1)×−
→֒ u2

k[[u]]where rev(u) is the even part of r(u), and the spaes in the lower line are viewed as a�nespaes.2.3. Analyti aspets. Let us reall the original form of the KV onjeture. Let k = R or
C.Conjeture 2.7. ([KV℄) For any �nite dimensional k-Lie algebra g, there exists a pair ofLie series A(x, y), B(x, y) ∈ f̂2, suh that:(KV1) x+ y − log eyex = (1− e− ad x)(A(x, y)) + (ead y − 1)(B(x, y));(KV2) A,B give onvergent power series at the neighborhood of (0, 0) ∈ g2;(KV3) trg((adx)∂xA+ (ad y)∂yB) = 1

2 trg(
ad x

ead x−1
+ ad y

ead y−1
− ad z

ead z−1
− 1) (identity of an-alyti funtions on g2 near the origin), where z = log exey and for (x, y) ∈ g2, (∂xA)(x, y) ∈

End(g) is a 7→ d
dt |t=0

A(x+ ta, y), (∂yB)(x, y)(a) = d
dt |t=0

B(x, y + ta).Aording to [AT℄, there is a unique map κ : TAut2 → tder2, where κ(g) := ℓ−gℓg−1, and
ℓ ∈ Der(̂f2) is the `grading' derivation ℓ(xi) = xi. It is proved in [AT℄ that if µ ∈ SolKV(k),and (A,B) are suh that −κ(µ−1) = [[A,B]], then (KV1) and (KV3) hold as identitiesbetween formal series for any g, where in (KV3) the formal series 1

2
t

et−1 is replaed by rµ(t).



10 A. ALEKSEEV, B. ENRIQUEZ, AND C. TOROSSIANLet ΦKZ(a, b) ∈ exp(̂f2) be the KZ assoiator, and Φ̃KZ(a, b) := ΦKZ( a
2π i ,

b
2π i ); reallthat Φ̃KZ is the renormalized holonomy from 0 to 1 of G′(t) = 1

2π i (
a
t + b

t−1 )G(t), and
Φ̃KZ ∈M1(C). Set µKZ := µΦ̃KZ

and uKZ = [[AKZ, BKZ]] := −κ(µ−1
KZ).Let (AR, BR) be de�ned as the real parts of (AKZ, BKZ) (w.r.t. the natural real strutureof f̂2). Then:Theorem 2.8. 1) (AR, BR) satis�es (KV1), (KV2) and (KV3) for any �nite dimensionalLie algebra g and is therefore a universal solution of the KV onjeture.2) For any s ∈ R, (As, Bs) := (AR +s(log(exey)−x), BR +s(log(exey)−y)) is a universalsolution of the KV onjeture.3) When s = −1/4, we have (As(x, y), Bs(x, y)) = (Bs(−y,−x), As(−y,−x)).Of ourse, the main new result here is the analytiity statement (KV2).2.4. Organization of the proofs. We onstrut the isomorphisms µ̃O

Φ and µO
Φ in Setion3. In Setion 4, we prove the identity relating µO and µO(i) . We then prove Theorem 2.1and Proposition 2.2 in Setion 5. In Setion 6, we prove Proposition 2.3, Theorem 2.5 andProposition 2.6. Setion 7 is devoted to a diret proof of the properties of αf . In Setion 8,we ompute the Jaobians of µO

Φ and αO
f and in Setion 9, we prove the analyti Theorem2.8. Appendix A is devoted to results on entralizers in tn and PBn(k).3. Assoiators and isomorphisms of free groups3.1. The ategories PaB,PaCD. In [B℄, Bar-Natan introdued the ategory PaB ofparenthesized braids. Its set of objets is the set of pairs O = (n, P ), where n in an in-teger ≥ 0 and P is a parenthesization of the word •...• (n letters); alternatively, P is aplanar binary tree with n leaves (we will set |O| = n). The objet with n = 0 is denoted 1.The morphisms are de�ned by PaB(O,O′) = ∅ if |O| 6= |O′|, and = Bn if |O| = |O′| = n;the omposition is then de�ned using the produt in Bn.

PaB is a braided monoidal ategory (see e.g. [CE℄), where the tensor produt of objets is
(n, P )⊗(n′, P ′) := (n+n′, P ∗P ′) (where P ∗P ′ is the onatenation of parenthesized words,e.g. for P = •• and P ′ = (••)•, P ∗ P ′ = (••)((••)•)). The tensor produt of morphisms
PaB(O1, O

′
1) × PaB(O2, O

′
2) → PaB(O1 ⊗ O2, O

′
1 ⊗ O

′
2) is indued by the juxtapositionof braids B|O1|×B|O2| → B|O1|+|O2| (the group morphism (σi, e) 7→ σi, (e, σj) 7→ σj+|O1|).The braiding βO,O′ ∈ PaB(O ⊗ O′, O′ ⊗ O) is the braid σn,n′ ∈ Bn+n′ where the n �rststrands are globally exhanged with the n′ last strands (see Figure 2); we have σn,n′ =

(σn...σ1)(σn+1...σ2)...(σn+n′−1...σn′) (where n = |O|, n′ = |O′|). Finally, the assoiativityonstraint aO,O′,O′′ ∈ PaB((O ⊗ O′) ⊗ O′′, O ⊗ (O′ ⊗ O′′)) orresponds to the trivial braid
e ∈ B|O|+|O′|+|O′′|.

2
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3

2

4

3
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σ

σ

σ

σ

σ

σ

σ

Figure 2.



DRINFELD ASSOCIATORS AND SOLUTIONS OF THE KASHIWARA�VERGNE EQUATIONS 11Moreover, the pair (PaB, •) is universal for pairs (C,M) of a braided monoidal ategoryand an objet, i.e., for eah suh pair, there exists a unique tensor funtor PaB→ C taking
• to M .Bar-Natan introdued another ategory PaCD, whih we will desribe as follows. Its setof objets is the same as that of PaB, and PaB(O,O′) = ∅ if |O| 6= |O′|, = exp(̂tn) ⋊ Sn if
|O| = |O′| = n. We de�ne the tensor produt as above at the level of objets, and by thejuxtaposition map (exp t̂n ⋊ Sn)× (exp t̂n ⋊ Sn)→ exp t̂n+n′ ⋊ Sn+n′ (the group morphismindued by ((tij , 1), 1) 7→ tij , ((1, si), 1) 7→ si, (1, (tij , 1)) 7→ tn+i,n+j , (1, (1, si)) 7→ sn+i) atthe level of morphisms.Any Φ ∈ M1(k) gives rise to a struture of braided monoidal ategory on PaCD (andtherefore to a tensor funtor PaB → PaCD, whih is the identity at the level of objets)as follows: βO,O′ = e

Pn
i=1

Pn+n′

j=n+1 tij/2sn,n′ , where n = |O|, n′ = |O′|, and sn,n′ ∈ Sn+n′is given by sn,n′(i) = n′ + i for i ∈ [n], sn,n′(n + i) = i for i ∈ [n′], and aO,O′,O′′ =

Φ(t12, t23)
1...n,n+1...n+n′,n+n′+1...n+n′+n′′ for n = |O|, n′ = |O′|, n′′ = |O′′|.3.2. Morphisms Bn → exp(̂tn) ⋊ Sn, PBn → exp(̂tn). Fix Φ ∈ M1(k). It gives rise to afuntor FΦ : PaB → PaCD, so for any n ≥ 1 and any O ∈ Ob(PaB), |O| = n, we get agroup morphism

FΦ(O) = µ̃O : Bn ≃ PaB(O)→ PaCD(O) = exp(̂tn) ⋊ Sn,suh that Bn
µ̃O
→ exp(̂tn) ⋊ Sn

ց ւ
Sn

ommutes. It follows that µ̃O restrits to a morphism
µ̃O : PBn → exp(̂tn).Let us show that the various µ̃O are are all onjugated to eah other. Let canO,O′ ∈

PaB(O,O′) orrespond to e ∈ Bn. Then canO′,O′′ ◦ canO,O′ = canO,O′′ . Moreover, if wedenote by σO : Bn → PaB(O) the anonial identi�ation, then σO′(b) = canO,O′ ◦σO(b) ◦
can−1

O,O′ . Let us set ΦO,O′ := FΦ(canO,O′). Then:1) ΦO,O′ ∈ exp(̂tn), ΦO′,O′′ΦO,O′ = ΦO,O′ ;2) µ̃O′(b) = ΦO,O′ µ̃O(b)Φ−1
O,O′ .If O = •(...(••)) is the `right parenthesization', the expliit formula for µ̃O is

µ̃O(σi) = Φi,i+1,i+2...neti,i+1/2si(Φ
i,i+1,i+2...n)−1, i = 0, ..., n− 1.The morphisms µ̃O extend to isomorphisms between prounipotent ompletions as follows.The prounipotent ompletion of Bn relative to Bn → Sn will be denoted Bn(k, Sn); it may beonstruted as follows: Bn ats by automorphisms of PBn, hene of PBn(k); Bn(k, Sn) �tsin an exat sequene 1 → PBn(k) → Bn(k, Sn) → Sn → 1 and identi�es with the quotientof the semidiret produt PBn(k)⋊ Bn by the image of the morphism PBn → PBn(k)⋊ Bn,

g 7→ (g−1, g) (whih is a normal subgroup). Then the morphisms µ̃O give rise to isomorphisms
PBn(k)

∼
→ exp(̂tn)

↓ ↓

Bn(k, Sn)
∼
→ exp(̂tn) ⋊ SnWhen Φ is the KZ assoiator (with oupling onstant 2π i), these isomorphisms are givenby Sullivan's theory of minimal models applied to the on�guration spae of n points inthe omplex plane (whih omputes all the rational homotopy groups of a simply-onnetedKaehler manifold, but only the Malev ompletion of its fundamental group in the non-simply-onneted ase, whene the name `1-formality').



12 A. ALEKSEEV, B. ENRIQUEZ, AND C. TOROSSIAN3.3. Restrition to free groups. Renumber xij , i < j ∈ {0, ..., n} and tij , i 6= j ∈
{0, ..., n} the generators for PBn+1 and tn+1. Reall that PBn+1 ontains the free groupwith n generators Fn = 〈x01, ..., x0,n〉 as a normal subgroup. Similarly, tn+1 ontains thefree Lie algebra with n generators fn = Lie(t01, ..., t0,n). For oherene of notation with theprevious setions, we will set Xi := x0i, xi := t0i.Proposition 3.1. For any O ∈ Ob(PaB) with |O| = n+ 1, the morphism µ̃O restrits to amorphism µO : Fn → exp(̂fn), whih extends to an isomorphism µO : Fn(k)→ exp(̂fn). Theomposition of µO with the isomorphism exp(̂fn) → Fn(k), exp(xi) 7→ Xi, is a tangentialautomorphism of exp(̂fn), i.e., an element of TAutn.Proof. Let us �rst treat the ase of µn := µ•(...(••)). As x0i = (σi−2...σ0)

−1σ2
i−1(σi−2...σ0),we have µn(x0i) = µn(σi−2...σ0)

−1Φi−1,i,i+1...n ·eti−1,i ·(Φi−1,i,i+1...n)−1µn(σi−2...σ0). Thereexists yi ∈ t̂n+1 suh that µn(σi−2...σ0) = eyisi−2...s0, so for some ỹi ∈ t̂n+1,
(Φi−1,i,i+1...n)−1µn(σi−2...σ0) = si−2...s0e

ỹi.Then µn(x0i) = e−ỹi(si−2...s0)
−1eti−1,isi−2...s0e

ỹi = e−ỹiet0ieỹi . As the ation of t̂n+1 on f̂nis by tangential automorphisms, we have e−ỹiet0ieỹi = eziet0ie−zi for some zi ∈ f̂n. So µn ◦
(et0i 7→ x0i) ∈ TAutn. The general ase follows from the identity µO′(b) = ΦO,O′µO(b)Φ−1

O,O′and the fat that for any Ψ ∈ exp(̂tn+1), x 7→ ΨxΨ−1 indues a tangential automorphism of
exp(̂fn). �Proposition 3.2. If moreover O = • ⊗ Ō, where Ō ∈ Ob(PaB) has length n, then
µO(X1...Xn) = ex1+...+xn.Proof. The map PB2 → PBn+1, p 7→ p0, g1...n takes x01 to x01...x0n = X1...Xn. Similarlyto (9), one proves that the diagram

PB2
p7→p0, g1...n

→ PBn+1

µ̃••↓ ↓µ̃•⊗Ō

exp(̂t2)
x 7→x0,1...n

→ exp(̂tn+1)ommutes. �The various isomorphisms µO are related by the identities(7) µO′ = Ad(ΦO,O′) ◦ µO;the automorphisms Ad(ΦO,O′) are no longer neessarily inner.4. The identity µO(i) = µ1,2,...,ii+1,...,n
O ◦ µi,i+1

•(••)Let O ∈ Ob(PaB) be a parenthesized word of length n; its letters are numbered 0, ..., n−1.Let i ∈ {1, ..., n− 1}, let O(i) be the objet obtained by replaing the letter • numbered i by
(••) (e.g., if O = •(••), then O(1) = •((••)•)). The purpose of this setion is to show theidentity

µO(i) = µ1,2,...,ii+1,...,n
O ◦ µi,i+1

•(••).4.1. Free magmas and semigroups. Reall that a magma is a triple (M,M×M →M, e ∈
M) satisfying e×m 7→ m and m× e 7→ m. A semigroup is a magma, where M ×M → Mis assoiative.Let X be a �nite set. Let MgX be the free magma generated by X and SgX the semigroupgenerated by X .The assignments X 7→ SgX , X 7→ MgX are funtorial and we have a natural



DRINFELD ASSOCIATORS AND SOLUTIONS OF THE KASHIWARA�VERGNE EQUATIONS 13map MgX → SgX ; so we have a ommutative diagram
MgX → SgX

↓ ↓
Mg{•} → Sg{•} = NThis diagram is Cartesian, so MgX an be identi�ed with a �bered produt. Expliitly,we have SgX = ⊔n≥0X

n, Mg{•} = ⊔n≥0{parenthesizations of the word •...• of length n} =

⊔n≥0{rooted planar binary trees with n leaves}, MgX = ⊔n≥0{parenthesized words of length
n in the alphabet X}.We denote by w : MgX → SgX (word), P : MgX → Mg{•} (parenthesization) the naturalmaps; the various maps to N are denoted by x 7→ |x| (length).Note that Sn ats on Xn. For w,w′ ∈ SgX , with |w| = |w′| = n, we then set Sw,w′ =
{σ ∈ Sn|σ · w = w′}.4.2. A braided monoidal ategory PaBX . We denote by BMC the `ategory' of braidedmonoidal ategories (b.m..), where morphisms are the tensor funtors.We de�ne a funtor Sets→ BMC, X 7→ PaBX , adjoint to the `objets' funtor BMC →
Sets, C 7→ ObC. This means that for any set X and b.m.. C, we have a natural bije-tion MorSets(X,ObC) ≃ MorBMC(PaBX , C). More preisely, we have an injetion X ⊂
ObPaBX , and for any b.m.. C and any map X → ObC, there is attahed a tensor funtor
PaBX → C, suh that ObPaBX → ObC extends X → ObC. When X = {•}, PaBXidenti�es with Bar-Natan's PaB.We now onstrut PaBX . We set Ob(PaBX) := MgX . For O,O′ ∈ MgX , we set
PaBX(O,O′) = ∅ if |O| 6= |O′|, and = Bn×πSw(O),w(O′) if |O| = |O′| = n (π : Bn → Sn isthe anonial projetion). So PaBX(O,O′) ⊂ Bn; sine Sw,w′Sw′,w′′ ⊂ Sw,w′′ , the produtin Bn restrits to a map PaBX(O,O′) ×PaBX(O′, O′′)→ PaBX(O,O′′), whih we de�neas the omposition in PaBX .The tensor produt is de�ned at the level of objets by the produt in MgX , and at thelevel of morphisms is indued by the juxtaposition map Bn×Bm → Bn+m.We now onstrut the braiding and assoiativity onstraints. For O,O′, O′′ ∈ MgX ,
aO,O′,O′′ ∈ PaBX((O ⊗ O′) ⊗ O′′, O ⊗ (O′ ⊗ O′′)) is de�ned as the identity element in
Bn+n′+n′′ (n = |O|, n′ = |O′|, n′′ = |O′′|).Then βO,O′ ∈ PaBX(O ⊗ O′, O′ ⊗ O) ≃ B|O|+|O′| orresponds to σn,n′ (one heks thatthe image sn,n′ ∈ Sn+n′ of σn,n′ belongs to the desired Sw,w′).One heks that PaBX , equipped with this struture, is a b.m.., and that X 7→ PaBXis adjoint to the `objets' funtor.4.3. The ategory PaCDX . We �rst de�ne a tensor ategory FX as follows. Ob(FX) :=
SgX , and for w,w′ ∈ SgX , FX(w,w′) = ∅ if |w| 6= |w′|, and = (exp(̂tn) ⋊ Sn) ×π Sw,w′ else,where π : exp(̂tn) ⋊ Sn → Sn is the anonial projetion. The omposition is de�ned asabove, using the produt in exp(̂tn) ⋊ Sn, again using Sw,w′Sw′,w′′ ⊂ Sw,w′′ .The tensor produt is de�ned, at the level of objets, by the semigroup law, and at the levelof morphisms using the juxtaposition (exp(̂tn)⋊Sn)×(exp(̂tn′)⋊Sn′)→ exp(̂tn+n′)⋊Sn+n′ .Let Φ ∈M1(k). For X = {•}, SgX = N (we then have n⊗m = n+m). For n, n′, n′′ ∈ N,we then set

an,n′,n′′ := Φ1...n,n+1...n+n′,n+n′+1...n+n′+n′′

∈ exp(̂tn+n′+n′′) ∈ F{•}(n⊗ n
′ ⊗ n′′);

sn,n′ ∈ Sn+n′ is the blok permutation i 7→ n′ + i (i ∈ [n]), n+ i 7→ i (i ∈ [n′]) and
βn,n′ := (et12/2)1...n,n+1...n+n′

sn,n′ ∈ exp(̂tn+n′) ⋊ Sn+n′ = F{•}(n⊗ n
′, n′ ⊗ n).We note that if X is arbitrary and w,w′, w′′ ∈ SgX , then a|w|,|w′|,|w′′| ∈ FX(w ⊗ w′ ⊗ w′′)and β|w|,|w′| ∈ FX(w ⊗ w′, w′ ⊗ w).



14 A. ALEKSEEV, B. ENRIQUEZ, AND C. TOROSSIANWe de�ne the ategory PaCDX by Ob(PaCDX) := MgX , and for O,O′ ∈ MgX , weset PaCDX(O,O′) := FX(w(O), w(O′)). The tensor produt is de�ned at the level ofobjets as the produt in Mg2; as w : Mg2 → Sg2 is ompatible with produts, a tensorprodut is de�ned at the level of morphisms by PaCDX(O1, O2) ⊗ PaCDX(O′
1, O

′
2) =

FX(w(O1), w(O2))⊗FX(w(O′
1), w(O′

2))→ FX(w(O1)⊗w(O′
1), w(O2)⊗w(O′

2)) = FX(w(O1⊗
O′

1), w(O2 ⊗O′
2)) = PaCDX(O1 ⊗O′

1, O2 ⊗O′
2).Let Φ ∈ M1(k). Then Φ gives rise to a b.m.. struture on PaCDX by aO,O′,O′′ :=

a|O|,|O′|,|O′′| ∈ FX(w(O) ⊗ w(O′) ⊗ w(O′′)) = PaCDX((O ⊗ O′) ⊗ O′′, O ⊗ (O′ ⊗ O′′))and βO,O′ := β|O|,|O′| ∈ FX(w(O) ⊗ w(O′), w(O′) ⊗ w(O)) = PaCDX(O ⊗ O′, O′ ⊗ O) for
O,O′, O′′ ∈MgX .We denote by PaCD

Φ
X the resulting b.m..4.4. Tensor funtors. When X = X1 := {•}, PaBX oinides with PaB; we also denote

MgX , PaCD
Φ
X by Mg, PaCD

Φ. For X = X2 := {•, ◦}, we denote PaBX , PaCD
Φ
X , MgX ,

SgX by PaB2, PaCD
Φ
2 , Mg2, Sg2.We de�ne PaB2 → PaB as the tensor funtor indued by the map X2 → Mg1, • 7→ •,

◦ 7→ ••.We denote by PaB → PaCD
Φ the tensor funtor indued by the anonial injetion

X1 → Ob(PaCD
Φ) = Mg1.Similarly, we denote by PaB2 → PaCD

Φ
2 the tensor funtor indued by the anonialinjetion X2 → Ob(PaCD

Φ
2 ) = Mg2.Let us now onstrut a funtor FX2 → FX1 . At the level of objets, this is the semigroupmorphism Sg2 → Sg1 indued by the map l : X2 → Sg1 ≃ N, w 7→ w̃ given by • 7→ 1 and ◦ 7→

2. So for w = (w1, ..., wn) ∈ ⊔n≥0X
n
2 , w̃ =

∑n
i=1 l(wi), where l(•) = 1 and l(••) = 2. Let usnow de�ne the funtor at the level of morphisms, i.e. the maps FX2(w,w

′)→ FX1 (w̃, w̃
′). As

FX2(w,w
′) = ∅ unless (card{i|wi = •}, card{i|wi = ◦}) = (card{i|w′

i = •}, card{i|w′
i = ◦}),we will assume that these pairs of integers are equal (in partiular |w| = |w′|); we denotethis pair by (n1, n2). Note that |w| = |w′| = n1 + n2, while w̃ = w̃′ = n1 + 2n2.There is a unique non-dereasing map φw : [n1 + 2n2] → [n1 + n2], suh that i has onepreimage by φw if wi = • and two preimages if wi = ◦; for example, if w = (•, •, ◦, ◦, •), then

φw : [7]→ [5] is (1, ..., 7) 7→ (1, 2, 3, 3, 4, 4, 5).Moreover, for any σ ∈ Sn1+n2 , there is a unique σw ∈ Sn1+2n2 suh that: (a) σ◦φw = φw′ ◦
σw, where w′ = σ ·w, so that σw restrits to bijetions φ−1

w (i)→ φ−1
w′ (i); (b) these bijetionsare inreasing (this ondition is nonempty only if cardφ−1

w (i) > 1). The map σ 7→ σ′ is agroup morphism Sn1+n2 → Sn1+2n2 (it maps a permutation to a blok permutation); forexample, if w = (◦, •, •), this map is S3 → S4, (
1 2 3
2 1 3

)
7→

(
1 2 3 4
3 1 2 4

), (
1 2 3
1 3 2

)
7→

(
1 2 3 4
1 2 4 3

).The morphisms tn1+n2 → tn1+2n2 , x 7→ xφw and Sn1+n2 → Sn1+2n2 , σ 7→ σw are om-patible, so we obtain a group morphism exp(̂tn1+n2) ⋊ Sn1+n2 → exp(̂tn1+2n2) ⋊ Sn1+2n2 .We then de�ne FX2 (w,w
′) → FX1 (w̃, w̃

′) as the restrition of this group morphism. Oneheks that this map is ompatible with tensor produts, so we have de�ned a tensor funtor
FX2 → FX1 .The tensor funtor FX2 → FX1 extends to a tensor funtor PaCD

Φ
2 → PaCD

Φ as follows.There is a unique magma morphism Mg2 → Mg1, O 7→ Õ, extending the map X2 → Mg1,
• 7→ •, ◦ 7→ ••. It is suh that the diagram

Mg2 → Mg1

↓ ↓
Sg2 → Sg1ommutes. The funtor PaCD

Φ
2 → PaCD

Φ is de�ned, at the level of objets, as the map
Mg2 → Mg1 and at the level of morphisms by PaCD

Φ
2 (O,O′) = FX2(w(O), w(O′)) →

FX1(w̃(O), w̃(O′)) = FX1(w(Õ), w(Õ′)) = PaCD(O,O′).



DRINFELD ASSOCIATORS AND SOLUTIONS OF THE KASHIWARA�VERGNE EQUATIONS 15It remains to show that it takes braidings and assoiativity onstraints to their analogues.Namely:(a) it takes βO,O′ ∈ PaCD2(O ⊗O′, O′ ⊗O) to βÕ,Õ′ ∈ PaCD(Õ ⊗ Õ′, Õ′ ⊗ Õ).(b) it takes aO,O′,O′′ ∈ PaCD2((O⊗O′)⊗O′′, O⊗ (O′⊗O′′)) to aÕ,Õ′,Õ′′ ∈ PaCD((Õ⊗

Õ′)⊗ Õ′′, Õ ⊗ (Õ′ ⊗ Õ′′)).To prove (a), let w,w′ = w(O), w(O′), (card{i|wi = •}, card{i|wi = ◦}) = (n1, n2),
(card{i|w′

i = •}, card{i|w′
i = ◦}) = (n′

1, n
′
2). Then βO,O′ = βn1+n2,n′

1+n′
2
∈ FX2(w⊗w

′, w′ ⊗
w). Similarly, βÕ,Õ′ = βn1+2n2,n′

1+2n′
2
∈ FX1(w̃ ⊗ w̃

′, w̃′ ⊗ w̃).Now note that:
((t12)

1...n,n+1...n+n′

)φw⊗w′ = (t12)
1...n1+2n2,n1+2n2+1...n1+2n2+n′

1+2n′
2 ,and

(sn,n′)w⊗w′

= sn1+2n2,n′
1+2n′

2
.So the map FX2(w ⊗w

′, w′ ⊗w)→ FX1(w̃ ⊗ w̃
′, w̃′ ⊗ w̃) takes βn,n′ to βn1+2n2,n′

1+2n′
2
. Theproof of (b) is similar.Then the diagram of funtors

PaB2 → PaB

↓ ↓

PaCD
Φ
2 → PaCD

Φommutes by universal properties (the two omposed funtors PaB2 → PaCD
Φ oinidesas their restritions to the elements of X2 ⊂ Ob(PaB2) do).Remark 4.1. More generally, to any map X → Mg1, one assoiates a tensor funtor

PaCD
Φ
X → PaCD

Φ, de�ned at the level of objets by the extension of this map to amorphism MgX → Mg1 and at the level of morphisms by suitable iterations of obrakets,and it is suh that
PaBX → PaB

↓ ↓
PaCDX → PaCDommutes.4.5. Relation between braid groups representations. Let n ≥ 1, let i ∈ [n], let wi =

(•, ..., •, ◦, •, ..., •) ∈ Sg2 be given by wi = ◦ and wj = • for j ∈ [n] − {i}. Let O ∈ Mg2 besuh that w(O) = wi. We have proved that the diagram
PaB2(O) → PaB(Õ)
↓ ↓

PaCD2(O) → PaCD(Õ)ommutes.We have isomorphisms:
PaB2(O) ≃ Bn×πSn−1, where Sn−1 ⊂ Sn identi�es with {σ ∈ Sn|σ(i) = i};
PaCD2(O) ≃ (exp(̂tn) ⋊ Sn)×π Sn−1;
PaB(Õ) ≃ Bn+1;
PaCD(Õ) ≃ exp(̂tn+1) ⋊ Sn+1.For O ∈ MgX1

, |O| = n, the morphism PaB(O)→ PaCD(O) is a morphism µO : Bn →

exp(̂tn) ⋊ Sn. Note that if OX ∈ MgX and O := P (OX), then we have a ommutativediagram
PaBX(OX) → PaCDX(OX)

↓ ↓

Bn
µO
→ exp(̂tn) ⋊ Snwhere the vertial maps are injetive.



16 A. ALEKSEEV, B. ENRIQUEZ, AND C. TOROSSIANThe above ommutative diagram therefore inserts in a diagram(8) Bn ← Bn×πSn−1
1,2,...,ĩi+1,...,n

→ Bn+1

µO↓ ↓ ↓µ
O(i)

exp(̂tn) ⋊ Sn ← (exp(̂tn) ⋊ Sn)×π Sn−1
1,2,...,ii+1,...,n

→ exp(̂tn+1) ⋊ Sn+1Restriting to pure braid groups, we obtain the ommutative diagram(9) PBn
1,2,...,ĩi+1,...,n

→ PBn+1

µO↓ ↓µ
O(i)

exp(̂tn)
1,2,...,ii+1,i+2,...,n+1

→ exp(̂tn+1)4.6. Relation between µO and µO(i) . Let O ∈ Ob(PaB), |O| = n. We index letters in Oby 0, ..., n− 1, �x an index i 6= 0 and onstrut O(i) by doubling inside O the • with index i.
O gives rise to a morphism µ̃O : Bn → exp(̂tn) ⋊ Sn, whih restrits to µO : Fn−1 →

exp(̂fn−1). Similarly, µ̃O(i) : Bn+1 → exp(̂tn+1) ⋊ Sn+1 restrits to µO(i) : Fn → exp(̂fn).We want to prove that(10) µO(i) = µ1,2,...,ii+1,...,n
O ◦ µi,i+1

•(••).We �rst show that there are uniquely determined elements g1, ..., gn−1 ∈ exp(̂fn−1) and
g, h ∈ exp(̂f2) suh that:(a) µO = [[g1(x1, ..., xn−1), ..., gn−1(x1, ..., xn−1)]], log gi(x1, ..., xn−1) = − 1

2 (x1 + ... +

xi−1) +O(x2), and8(b) µ•(••) = [[g(x1, x2), h(x1, x2)]], log g(x1, x2) = O(x2), log h(x1, x2) = − 1
2x1 +O(x2).Let us prove the �rst statement (it atually ontains the seond statement as a parti-ular ase). The elements gi(x1, ..., xn−1) are uniquely determined by the equality µO =

[[g1, ..., gn−1]], together with the ondition that the oe�ient of xi in the expansion of log givanishes. We should then prove that log gi = − 1
2 (x1 + ...+ xi−1) +O(x2). We have

µ̃O(σj) = eaj · etj−1,j/2sj · e
−aj ,where aj ∈ t̂n has valuation ≥ 2 (we write this as aj ∈ O(t2)), and

µO(Xi) = µ̃O(σ1)
−1...µ̃O(σi−1)

−1µ̃O(σi)
2µ̃O(σi−1)...µ̃O(σ1).Now

µ̃O(σi−1)...µ̃O(σ1) = si−1...s1e
1
2 (x1+...+xi−1)+O(t2)and µ̃O(σ2

i ) = eaieti−1,ie−ai . It follows that
µO(Xi) = e−

1
2 (x1+...+xi−1)+O(t2)eãi · exi · (same)−1,where ãi = s1...si−1 ·ai ·si−1...s1 ∈ O(t2), so µO(Xi) = e−

1
2 (x1+...+xi−1)+O(t2) ·exi ·(same)−1,whih implies that gi has the announed form.To prove (10), we need to prove the equality

µO(i) = [[g1(x1, ..., xi + xi+1, ..., xn), ..., gi(x1, ..., xi + xi+1, ..., xn)g(xi, xi+1),(11)
gi(x1, ..., xi + xi+1, ..., xn)h(xi, xi+1), ..., gn−1(x1, ..., xi + xi+1, ..., xn)]].(9) implies that the diagram

Fn−1 → Fn

µO↓ ↓µ
O(i)

exp(̂fn−1) → exp(̂fn)8O(x2) means an element of f̂n−1 of valuation ≥ 2.



DRINFELD ASSOCIATORS AND SOLUTIONS OF THE KASHIWARA�VERGNE EQUATIONS 17ommutes, where the upper morphism takes Xj (j ∈ [n−1]) to: Xj if j < i, XiXi+1 if j = i,
Xj+1 if j > i+ 1 and the lower morphism is similarly de�ned (replaing produts by sumsand Xk's by xk's). Speializing to the generators Xj (j 6= i) of Fn−1, this yields

µO(i)(Xj) = g0,1,...,ii+1,...,n
j · exj · (same)−1for j < i and

µO(i)(Xj) = g0,1,...,ii+1,...,n
j−1 · exj · (same)−1for j > i+ 1, whih implies that (11) holds when applied to the generators Xj , j 6= i, i+ 1.We now prove that (11) also holds when applied to Xi and Xi+1.The morphism Xi ∈ Bn = PaB(O,O) an be deomposed as

O
(σi−2...σ0)

−1

→ (O1 ⊗ (••))⊗O2

σ2
i−1
→ (O1 ⊗ (••))⊗O2

σi−2...σ0
→ O.Here the braid group elements indiate the morphisms. Let γ ∈ exp(̂tn) ⋊ Sn be the imageof the morphism O

(σi−2...σ0)
−1

→ (O1⊗ (••))⊗O2 under PaB→ PaCD; its image in Sn is thepermutation s0...si−2, i.e., (0, ..., n− 1) 7→ (i− 1, 0, 1, ..., i− 2, i, i+ 1, ..., n− 1). The imageof (O1 ⊗ (••))⊗O2

σ2
i−1
→ (O1 ⊗ (••))⊗O2 is eti−1,i , therefore the image of Xi is

µO(Xi) = γeti−1,iγ−1.We have γ = γ0s0...si−2, where γ0 ∈ exp(̂tn). As s0...si−2 · ti−1,i = xi, we have
µO(Xi) = γ0e

xiγ−1
0 .As this image is also gi(x1, ..., xn−1) · exi · (same)−1, we derive from this that g−1

i γ0 om-mutes with xi, hene by Proposition A.1 has the form eλxiα0i,1,2,...,i−1,i+1,...,n−1, where
α ∈ exp(̂tn−1).Sine µO(σj) = sje

tj,j+1/2, we get log γ0 = − 1
2 (x1 + ...+xi−1)+O(x2). Comparing linearterms in xi, we get λ = 0.Let us now ompute µO(i)(Xi). The morphism Xi ∈ Bn+1 = PaB(O(i), O(i)) an bedeomposed as

O(i) (σi−2...σ0)
−1

→ (O1 ⊗ (•(••)))⊗O2

σ2
i−1
→ (O1 ⊗ (•(••)))⊗O2

σi−2...σ0
→ O(i)(here σ2

i−1 involves the two �rst • of •(••)). The morphism O(i) (σi−2...σ0)
−1

→ (O1⊗ (•(••)))⊗

O2 is obtained from O(i) (σi−2...σ0)
−1

→ (O1 ⊗ (••)) ⊗ O2 by the operation of doubling ofthe ith strand, so its image is γ0,1,2,...,ii+1,...,n = γ0,1,2,...,ii+1,...,n
0 (s0...si−2). The image of

•(••)
σ2
1→ •(••) is g(x1, x2) · ex1 · (same)−1, so the image of

(O1 ⊗ (•(••)))⊗O2

σ2
i−1
→ (O1 ⊗ (•(••)))⊗O2is g(ti−1,i, ti−1,i+1)e

ti−1,i(same)−1. It follows that
µO(i)(Xi) = γ0,1,2,...,ii+1,...,ng(ti−1,i, ti−1,i+1)·e

ti−1,i ·(same)−1 = γ0,1,2,...,ii+1,...,n
0 g(xi, xi+1)·e

xi ·(same)−1.Now we laim that
γ0,1,2,...,ii+1,...,n
0 g(xi, xi+1)e

xi(same)−1 = g0,1,2,...,ii+1,...,n
i g(xi, xi+1) · e

xi · (same)−1.Indeed,
(g−1

i γ0)
0,1,2,...,ii+1,...,ng(xi, xi+1) · e

xi · (same)−1

= (α0i,1,2,...,i−1,i+1,...,n−1)0,1,2,...,ii+1,...,ng(xi, xi+1) · e
xi · (same)−1

= α0ii+1,2,3,...,i−1,i+2,...,g(xi, xi+1) · e
xi · (same)−1.Now xi and xi+1 ommute with any α0ii+1,..., so this is g(xi, xi+1) · exi · (same)−1.



18 A. ALEKSEEV, B. ENRIQUEZ, AND C. TOROSSIANSo we get
µO(i)(Xi) = g0,1,2,...,ii+1,...,n

i g(xi, xi+1) · e
xi · (same)−1.The same argument shows that

µO(i)(Xi+1) = g0,1,2,...,ii+1,...,n
i h(xi, xi+1) · e

xi+1 · (same)−1,as wanted. 5. The map M1(k)→ SolKV(k)We show that for Φ ∈M1(k), µΦ ∈ SolKV(k). By onstrution of µΦ, we have µΦ(X) ∼
ex, µΦ(Y ) ∼ ey, so µΦ ∈ TAut2.5.1. Proof of Ad Φ(t12, t23) ◦ µ

12,3
Φ ◦ µ1,2

Φ = µ1,23
Φ ◦ µ2,3

Φ . We �rst prove:Proposition 5.1. 1) µ•(••) = µΦ.2) Φ•((••)•),•(•(••)) = Φ(t12, t23).Proof. Let us prove 1). x01 ∈ B3 = PaB(•(••)) orresponds to a•,•,• ◦ (β2
•,•⊗ id•)◦a−1

•,•,•.The image of this element in exp(̂t3) ⋊ S3 is µ•(••)(X) = Φ(t01, t12)e
t01Φ(t01, t12)

−1. Sine
t01+t12+t02 is entral in t3 and sine Φ is group-like, this is Φ(t01,−t01−t02)et01Φ(t01,−t01−
t02)

−1 = Φ(x,−x− y)exΦ(x,−x− y)−1 = µΦ(X). Similarly, x02 orresponds to (id•⊗β•,•)◦
a•,•,• ◦ (β2

•,• ⊗ id•) ◦ a−1
•,•,• ◦ (id•⊗β−1

•,•). The image of this element in exp(̂t3) ⋊ S3 is
µ•(••)(Y )

= et12/2(12)Φ(t01, t12)e
t01Φ(t01, t12)

−1(12)e−t12/2 = et12/2Φ(t02, t12)e
t02Φ(t02, t12)

−1e−t12/2

= e−(t01+t02)/2Φ(t02,−t01 − t02)e
t02Φ(t02,−t01 − t02)

−1e(t01+t02)/2

= e−(x+y)/2Φ(y,−x− y)eyΦ(y,−x− y)−1e(x+y)/2 = µΦ(Y ).So µ•(••) = µΦ.Let us now prove 2). Let O := •((••)•), O′ := •(•(••)). Then canO,O′ = id•⊗a•,•,• ∈
PaB(O,O′), whose image in PaCD(O,O′) = exp(̂t4) ⋊ S4 is Φ(t12, t23) = ΦO,O′ . �We now prove (2). Applying (4) to O = •(••) and i = 1, 2, and using µ•(••) = µΦ, we get

µ•((••)•) = µ12,3
Φ ◦ µ1,2

Φ , µ•(•(••)) = µ1,23
Φ ◦ µ2,3

Φ .Moreover, (7) implies
Ad Φ•((••)•),•(•(••)) ◦ µ•((••)•) = µ•(•(••)).As Φ•((••)•),•(•(••)) = Φ(t12, t23), we get (2).5.2. Proof of µΦ(XY ) = ex+y. We will give three proofs:First proof. We have

µΦ(XY ) = µΦ(X)µΦ(Y )

= Φ(x,−x− y)exΦ(−x− y, x)e−(x+y)/2Φ(y,−x− y)eyΦ(−x− y, x)e(x+y)/2

= Φ(x,−x− y)ex/2Φ(y, x)ey/2Φ(−x− y, x)e(x+y)/2 = ex+y,where the seond equality follows from the duality identity and the third and fourth equalitiesboth follow from the hexagon identity.Seond proof. Let us set ν := µ−1
Φ . Sine µΦ satis�es (2), we have(12) ν2,3 ◦ ν1,23 = ν1,2 ◦ ν12,3 ◦Ad(Φ(t12, t23)).Let us set C(x, y) := ν(x + y), and apply (12) to x + y + z to obtain C(x,C(y, z)) =

C(C(x, y), z). Aording to [AT℄, this implies C(x, y) = s−1 log(esxesy) for some s ∈ k
×.Cheking degree 1 and 2 terms in ν, we get s = 1.



DRINFELD ASSOCIATORS AND SOLUTIONS OF THE KASHIWARA�VERGNE EQUATIONS 19Third proof. As µ̃••(x01) = et01 , and using Proposition 3.2, we get µ•⊗Ō(X1...Xn) =
µ̃•⊗Ō(X1...Xn) = (et01)0,1...n = ex1+...+xn. This implies µΦ(XY ) = ex+y sine µΦ = µ•(••).5.3. Proof that J(µΦ) is a δ-oboundary (end of proof of Theorem 2.1). Sine
J(Ad Φ(t12, t23)) = 0, and J(µ12,3

Φ ) = J(µΦ)12,3, et., we get by applying J to (2),
Φ(t12, t23) · J(µΦ)12,3 + Φ(t12, t23) ◦ µ

12,3
Φ · J(µΦ)1,2 = J(µΦ)1,23 + µ1,23

Φ · J(µΦ)2,3.Applying the inverse of (2), we get
(µ1,2

Φ )−1◦(µ12,3
Φ )−1·J(µΦ)12,3+(µ1,2

Φ )−1·J(µΦ)1,2 = (µ2,3
Φ )−1◦(µ1,23

Φ )−1·J(µΦ)1,23+(µ2,3
Φ )−1·J(µΦ)2,3,and sine a12,3 · t12,3 = (a · t)12,3, et.,

(µ1,2
Φ )−1 · (µ−1

Φ ·J(µΦ))12,3 +(µ−1
Φ ·J(µΦ))1,2 = (µ2,3

Φ )−1 · (µ−1
Φ ·J(µΦ))1,23 +(µ−1

Φ ·J(µΦ))2,3.Now µ−1
Φ (x+y) = log(exey) implies that (µ1,2

Φ )−1 ·t12,3 = t1̃2,3, and similarly with 1, 23, so
δ̃(µ−1

Φ · J(µΦ)) = 0. So there exists γ ∈ T̂1 with valuation ≥ 2 suh that µ−1
Φ · J(µΦ) = δ̃(γ).Now µΦ · γ

1̃2 = γ12, and µΦ · γ1 = γ1, µΦ · γ2 = γ2 as µΦ(x) ∼ x, µΦ(y) ∼ y, therefore
µΦ · δ̃(γ) = δ(γ). So J(µΦ) = δ(γ). It follows that for a suitable γ ∈ u2

k[[u]], we have
J(µΦ) = δ(γ) = 〈γ(x+ y)− γ(x)− γ(y)〉.All this ends the onstrution of the mapM1(k)→ SolKV(k), hene the proof of Theorem2.1.5.4. Computation of J(µΦ) (proof of Proposition 2.2). Let U := [[1, A(x, y)]] ∈ TAut2,where

logA(x, y) =
∑

k≥1

αk(adx)k(y) +O(y2)(hereO(y2) means a series of elements with y-degree≥ 2). Then logU = [[0,
∑

k≥1 αk(adx)k(y)+

O(y2)]], and J(U) = j(logU) +O(y2). Now j(logU) = 〈
∑

k≥1 αky(−x)
k +O(y2)〉. So

J(U) = 〈
∑

k≥1

αk(−x)ky〉+O(y2).On the other hand, the hexagon identity implies that µΦ = Inn(Φ(x,−x − y)e−x/2) ◦ µ̄Φ,where µ̄Φ = [[1,Φ(x, y)−1]], and we then have J(µ̄Φ) = J(µΦ).We have log Φ(x, y) = −
∑

k≥1 ζΦ(k + 1)(adx)k(y) +O(y2), therefore
J(µΦ) = J(µ̄Φ) = 〈

∑

k≥1

(−1)kζΦ(k + 1)xky〉+O(y2).As we have J(µΦ) = 〈f(x) + f(y)− f(x+ y)〉 for some series f(x), we get(13)
J(µΦ) = 〈(−1)k ζΦ(k + 1)

k + 1
((x+y)k+1−xk+1−yk+1)〉 = 〈log ΓΦ(x)+log ΓΦ(y)−log ΓΦ(x+y)〉.This proves Proposition 2.2. 6. Group and torsor aspets6.1. Group strutures of KV(k) and KRV(k). It is proved in [AT℄ that KRV(k) is agroup, ating freely and transitively on SolKV(k).Let us prove that KV(k) is a group. For α ∈ KV(k), let σα := Duf(α), so σα ∈ u

2
k[[u]],and J(α) = δ̃(σα). If α, α′ ∈ KV(k), we have learly α′ ◦ α(X) ∼ X , α′ ◦ α(Y ) ∼ Y ,

α′◦α(XY ) = XY . Moreover, J(α′ ◦α) = J(α′)+α′ ·J(α) = δ̃(σα′)+α′ · δ̃(σα) = δ̃(σα +σα′ ),where the last equality follows from α′(X) ∼ X , α′(Y ) ∼ Y , α′(XY ) = XY , whih implies
δ̃(α′ · t) = δ̃(t) for t ∈ T̂1. So α′ ◦ α ∈ KV(k). One proves similarly that α−1 ∈ KV(k). Wehave also proved that σα′◦α = σα + σα′ , i.e., Duf : KV(k)→ u2

k[[u]] is a group morphism.



20 A. ALEKSEEV, B. ENRIQUEZ, AND C. TOROSSIAN6.2. The torsor struture of SolKV(k) (proof of Proposition 2.3). Let us prove that
KV(k) ats on SolKV(k). For µ ∈ SolKV(k), let rµ := Duf(µ), so rµ ∈ u2

k[[u]], and J(µ) =
δ(rµ). For µ ∈ SolKV(k), α ∈ KV(k), we have µ◦α(X) ∼ µ(X) ∼ ex, µ◦α(Y ) ∼ µ(Y ) ∼ ey,
µ ◦ α(XY ) = µ(XY ) = ex+y. Moreover, J(µ ◦ α) = J(µ) + µ · J(α) = δ(rµ) + µ · δ̃(σα) =

δ(rµ + σα), where the last equality uses the identity δ(t) = µ · δ̃(t) for t ∈ T̂2, whih followsfrom µ(XY ) = ex+y, µ(X) ∼ ex, µ(Y ) ∼ ey. So µ ◦ α ∈ SolKV(k). We have also provedthat rµ◦α = rµ + σα, so Duf : SolKV(k)→ u2
k[[u]] is a morphism of torsors.Let us now prove that the ation of KV(k) on SolKV(k) is free and transitive. For

µ, µ′ ∈ SolKV(k), set α := µ−1 ◦ µ′; then α(X) ∼ X , α(Y ) ∼ Y , α(XY ) = XY , and
J(α) = J(µ−1) + µ−1 · J(µ′) = µ−1 · (J(µ′) − J(µ)) as J(µ−1) = −µ−1 · J(µ). Then
J(α) = µ−1 · (δ(rµ′ − rµ)) = δ̃(rµ′ − rµ), where the last equality uses µ−1 · δ(t) = δ̃(t) for
t ∈ T̂1. So α ∈ KV(k).6.3. Compatibilities of morphisms with group strutures and ations (proof ofTheorem 2.5). We now show that: (a) f 7→ α−1

f is a group morphism GT1(k) → KV(k),(b) g 7→ a−1
g is a group morphism GRT1(k)→ KRV(k), () the map Φ 7→ µΦ is ompatiblewith the ations of these groups.For this, we will show that(14) µf∗Φ = µΦ ◦ αf , µΦ∗g = ag ◦ µΦ.We will hek these identities on the �rst generator (X or x), the proofs in the seond asebeing similar.The proofs go as follows:
µf∗Φ(X) = (f ∗ Φ)(x,−x− y) · ex · (same)−1

= f(Φ(x,−x− y)exΦ(x,−x− y)−1, e−x−y)Φ(x,−x− y) · ex · (same)−1

= f(µΦ(X), µΦ(Y −1X−1)) · µΦ(X) · (same)−1

= µΦ(f(X,Y −1X−1) ·X · (same)−1) = µΦ ◦ αf (X)and
µΦ∗g(X) = (Φ ∗ g)(x,−x− y) · ex · (same)−1

= Φ(g(x,−x− y)xg(x,−x− y)−1,−x− y)g(x,−x− y) · ex · (same)−1

= Φ(ag(x), ag(−x− y)) · ag(x) · (same)
−1

= ag(Φ(x,−x− y)xΦ(x,−x− y)−1) = ag ◦ µΦ(X).The �rst part of (14) implies the following: (a) if f ∈ GT1(k), then αf ∈ KV(k); (b)
αf1∗f2 = αf2 ◦αf1 ; ()M1(k)→ SolKV(k) is ompatible with the group morphism f 7→ α−1

f .Indeed, using the nonemptinesss ofM1(k) (see [Dr℄) we get αf = µ−1
Φ ◦µf∗Φ, whih implies

αf ∈ KV(k) aording to Subsetion 6.2, i.e., (a). Again using the nonemptiness of M1(k),we get αf1∗f2 = µ−1
Φ ◦ µ(f1∗f2)∗Φ = (µ−1

Φ ◦ µf2∗Φ) ◦ (µ−1
f2∗Φ
◦ µf1∗(f2∗Φ)) = αf2 ◦αf1 (where weused (f1 ∗ f2) ∗ Φ = f1 ∗ (f2 ∗ Φ)), whih proves (b). () is then tautologial.Similarly, the seond part of (14) implies: (a) if g ∈ GRT1(k), then ag ∈ KRV(k); (b)

ag1∗g2 = ag2 ◦ ag1 ; () M1(k)→ SolKV(k) is ompatible with the group morphism g 7→ a−1
g .All this proves Theorem 2.5.



DRINFELD ASSOCIATORS AND SOLUTIONS OF THE KASHIWARA�VERGNE EQUATIONS 21It is easy to prove the identities αf1∗f2 = αf2 ◦ αf1 , ag1∗g2 = ag2 ◦ ag1 diretly (i.e., notusing the nonemptiness of M1(k)): the veri�ations on the �rst generators (X and x) are
αf1∗f2(X) = (f1 ∗ f2)(X,Y

−1X−1) ·X · (same)−1

= f1(f2(X,Y
−1X−1)Xf2(X,Y

−1X−1)−1, Y −1X−1)f2(X,Y
−1X−1) ·X · (same)−1

= f1(αf2(X), αf2(Y
−1X−1)) · αf2(X) · (same)−1

= αf2(f1(X,Y
−1X−1) ·X · (same)−1) = αf2 ◦ αf1(X),and

ag1∗g2(x) = (g1 ∗ g2)(x,−x− y) · x · (same)
−1

= g1(g2(x,−x− y)xg2(x,−x− y)
−1,−x− y)g2(x,−x − y) · x · (same)

−1

= g1(ag2(x), ag2(−x− y)) · ag2(x) · (same)
−1

= ag2(g1(x,−x− y)xg1(x,−x− y)
−1) = ag2 ◦ ag1(x).Remark 6.1. The Lie algebra morphism orresponding to g 7→ a−1

g is the morphism ν :
grt1 → krv from [AT℄, given by ψ(x, y) 7→ [[ψ(x,−x − y), ψ(y,−x− y)]].6.4. Torsor properties of the Du�o formal series (proof of Proposition 2.6). Wehave already proved that M1(k) → SolKV(k), and SolKV(k)

Duf
→ u2

k[[u]] is a morphism oftorsors. On the other hand, it follows from [E℄ that M1(k)
Φ7→log ΓΦ
→ {r ∈ u2

k[[u]]|rev(u) =

−u2

24 + ...} is a morphism of torsors and from Proposition 2.2 that the diagram of Proposition2.6) ommutes.For later use, let us make the group morphism GT1(k)→ u3
k[[u2]] underlying Φ 7→ log ΓΦexpliit.Lemma 6.2. For f ∈ GT1(k), there is a unique Γf ∈ exp(u3
k[[u2]]) suh that

[log f(ea, eb)] = 1−
Γf(−a)Γf (−b)

Γf (−a− b)
;here we use the isomorphism f̂′2/̂f

′′
2 ≃ abk[[a, b]] given by (lass of (ada)k(ad b)l([a, b])) ↔

ak+1b
l+1. The map GT1(k)→ u3

k[[u2]], f 7→ log Γf is a group morphism and Γf∗Φ = ΓfΓΦfor any f ∈ GT1(k), Φ ∈M1(k).Proof. The map f2 → k[a, b], ψ 7→ (b∂bψ)ab also indues an isomorphism f̂′2/̂f
′′
2 ≃ abk[[a, b]],whih takes the lass (ad a)k(ad b)l([a, b]) to (−1)k+l+1ak+1b

l+1. So for ψ ∈ f̂′2, we have
(b∂bψ)ab(ā, b̄) = −[ψ](−ā,−b̄) (where ψ 7→ [ψ] is the map f̂′2 → f̂′2/̂f

′′
2 ≃ abk[[a, b]]).So (6) may be rewritten

[log Φ](a, b) = 1−
ΓΦ(−a− b)

ΓΦ(−a)ΓΦ(−b)
.If now ψ, α ∈ f̂′2, we have ψ(e−αaeα, b) ∈ f̂′2 and [ψ(e−αaeα, b)] = (1 − [α(a, b)])[ψ(a, b)].Indeed, when ψ(a, b) = (ad a)k(ad b)l([a, b]), one heks that the part of ψ(e−αaeα, b) on-taining α more than twie lies in f̂′′2 , and the part ontaining it one has the same lass as

(ad a)k(ad b)l([[−α, a], b]).If now f ∈ GT1(k), we have (f ∗ Φ)(a, b) = Φ(a, b)f(Φ−1(a, b)eaΦ(a, b), eb), so
[log(f ∗ Φ)(a, b)] = [log Φ(a, b)] + [log f(Φ−1(a, b)eaΦ(a, b), eb)]

= [log Φ(a, b)] + [log f(ea, eb)]− [log Φ(a, b)][log f(ea, eb)].so(15) 1− [log(f ∗ Φ)(a, b)] = (1− [log Φ(a, b)])(1 − [log f(ea, eb)]).



22 A. ALEKSEEV, B. ENRIQUEZ, AND C. TOROSSIANIf �x Φ0 ∈M1(k) and set Γf (u) := Γf∗Φ0(u)/ΓΦ0(u), then we get
1− [log f(ea, eb)] =

Γf (−a)Γf (−b)

Γf (−a− b)as wanted. Moreover, (15) implies that Γf∗Φ = ΓfΓΦ, whih also implies that f 7→ Γf is agroup morphism. �7. Diret onstrution of the map GT1(k)→ KV(k)We will now sketh a proof of (f ∈ GT1(k)) ⇒ (αf ∈ KV(k)), independent of thenonemptiness of M1(k).7.1. Ation of GT1(k) on ompleted braid groups. Let C be a b.m.. We denote by
βX,Y : X⊗Y → Y ⊗X and aX,Y,Z : (X⊗Y )⊗Z → X⊗(Y ⊗Z) the braiding and assoiativityonstraints. For O ∈ Ob(PaB) of length n and any X1, ..., Xn ∈ Ob(C), we onstrutthe tensor produt O(X1, ..., Xn) of X1, ..., Xn with parenthesization O. We say that C isprounipotent if for any X1, ..., Xn and any O, the image of PBn → AutC(O(X1, ..., Xn)) isprounipotent (it su�es to require this for a given O). If C is a prounipotent b.m.. and
f ∈ GT1(k), we onstrut a new b.m.. fC as follows: fC is the same as C at the levelof objets and morphisms, the omposition and the tensor produt of morphisms are notmodi�ed, but the braiding and assoiativity onstraints are modi�ed as follows:

β′
X,Y = βX,Y , a′X,Y,Z = aX,Y,Z ◦ f(βY XβXY , a

−1
X,Y,Z ◦ βZY βY Z ◦ aX,Y,Z).We then have f1(f2C) = f1∗f2C. Moreover, the ation of GT1(k) on BMC is funtorial,so a tensor funtor φ : C → D and f ∈ GT1(k) give rise to fφ : fC → fD. Note thatfor O,O′ ∈ Ob(C), and under the identi�ations fC(O,O′) = C(O,O′), fD(φ(O), φ(O′)) =

D(φ(O), φ(O′)), the map fφ(O,O′) : fC(O,O′)→ fD(φ(O), φ(O′)) oinides with φ(O,O′) :
C(O,O′)→ D(φ(O), φ(O′)).Let PaBk be the ompletion of PaB obtained by replaing eah group Bn by its omple-tion Bn(Sn,k) relative to the morphism Bn → Sn. By universal properties, we have a uniquemorphism φf : PaB → f

PaB whih is the identity on objets. If then f1, f2 ∈ GT1(k), wehave(16) f1φf2 ◦ φf1 = φf1∗f2 ;indeed, both terms are tensor funtorsPaBk → f1∗f2PaBk whih are the identity on objets.If nowO ∈ Ob(PaB) has length n, φf gives rise to a group morphism φf (O) : PaBk(O)→
f
PaBk(O). We denote by

α̃O
f : Bn(Sn,k)→ Bn(Sn,k)the group endomorphism derived from φf (O) and the identi�ationsPaBk(O) = f

PaBk(O) =
Bn(Sn,k). Identity (16) and the identi�ation of f1α̃O

f2
with α̃O

f2
imply

α̃O
f2
◦ α̃O

f1
= α̃O

f1∗f2
,so we have a group antimorphism GT1(k)→ Aut(Bn(Sn,k)), f 7→ α̃O

f .It is easy to see that we have a ommutative diagram Bn(Sn,k)
α̃O

f
→ Bn(Sn,k)

ց ւ
Sn

so α̃O
frestrits to an automorphism α̃O

f ∈ Aut(PBn(k)).If nowO,O′ ∈ Ob(PaB) have length n, then canO,O′ ∈ PaBk(O,O′) is the morphism or-responding to the trivial braid. Then φf (canO,O′)◦can−1
O,O′ ∈ PaBk(O). Let fO,O′

∈ PBn(k)



DRINFELD ASSOCIATORS AND SOLUTIONS OF THE KASHIWARA�VERGNE EQUATIONS 23be the image of this element. Sine the diagram PaB(O)
x 7→canO,O′ ◦x◦can−1

O,O′

→ PaB(O′)
ց ւ

Bn(Sn,k)ommutes, we have(17) α̃O′

f = Inn(fO,O′

) ◦ α̃O
f .7.2. Ations of GT1(k) on free groups. Let us index the generators of PBn(k) by xij ,

0 ≤ i < j ≤ n − 1. Reall that the subgroup of PBn(k) generated by x01, ..., x0,n−1 isisomorphi to Fn−1(k). We set Xi = x0i for i = 1, ..., n− 1.Proposition 7.1. Eah α̃O
f restrits to an automorphism αO

f ∈ Aut(Fn−1(k)), suh thatfor any i, αO
f (Xi) ∼ Xi.Proof. Let us index the letters of O by 0, ..., n − 1. For i = 1, ..., n − 1, let Oi be anobjet of PaB of length n, in whih the letters i − 1 and i appear as ...(••)..... We have

Xi = (σ0...σi−2)
−1σ2

i−1σ0...σi−2. We have α̃O
f (σ0...σi−2) = σ0...σi−2 ·pi, where pi ∈ PBn(k).On the other hand, α̃O

f (σi−1) = fO,Oi α̃O
f (σi−1)(f

O,Oi)−1 and α̃O
f (σi−1) = σi−1 as Bn ≃

PaB(Oi) takes σi−1 to id⊗i−1
• ⊗β•,• ⊗ id⊗n−i−2

• . So
α̃O

f (σ2
i−1) = fO,Oiσ2

i−1(f
O,Oi)−1,with αO,Oi

f ∈ PBn(k). Then
α̃O

f (Xi) = (σ0...σi−2pi)
−1fO,Oiσ2

i−1(f
O,Oi)−1σ0...σi−2pi

= p−1
i (σ0...σi−2)

−1fO,Oi(σ0...σi−2) ·Xi · (same)
−1.

(18)As p−1
i (σ0...σi−2)

−1fO,Oi(σ0...σi−2) belongs to PBn(k), and as PBn(k) ats on Fn−1(k)by tangential automorphisms, we obtain that α̃O
f (Xi) lies in Fn−1(k) and is onjugated in

Fn−1(k) to Xi. �Similarly to Proposition 3.2, one an prove:Proposition 7.2. If O = • ⊗ Ō, where Ō ∈ Ob(PaB), then αO
f (X1...Xn−1) = X1...Xn−1.We then have

αO′

f = Ad(fO,O′

) ◦ αO
f ;this is an identity in Aut(Fn−1(k)), where Ad(αO,O′

f ) is not neessarily inner.We also reord the identities(19) µ̃O
f∗Φ = µ̃O

Φ ◦ α
O
f , µO

f∗Φ = µO
Φ ◦ α

O
f .7.3. The map GT1(k) → KV(k). Let us �x an element f ∈ GT1(k) and denote α̃O

f , αO
fsimply by α̃O, αO.As in Subsetion 4.5, one proves that(20) PBn(k)

1,2,...,ĩi+1,...,n
→ PBn+1(k)

αO↓ ↓α
O(i)

PBn(k)
1,2,...,ĩi+1,...,n

→ PBn+1(k)ommutes. Using Proposition A.3, one then proves(21) αO(i) = α1,...,ĩi+1,...,n
O ◦ αi,i+1

•(••).Similarly to Proposition 5.1, one proves that1) α•(••) = αf .2) f•((••)•),•(•(••)) = f(x12, x23).



24 A. ALEKSEEV, B. ENRIQUEZ, AND C. TOROSSIANAs in Subsetion 5.1, one proves that this implies(22) Ad f(x12, x23) ◦ α
f12,3
f ◦ α1,2

f = α1,f23
f ◦ α2,3

f .As in Subsetion 5.2, one an give three proofs of the fat that αf (XY ) = XY . Similarly toSubsetion 5.3, one then proves that identity (22) then implies that J(αf ) is a δ̃-oboundary.Let us explain this proof in some detail. Sine J(Ad f(x12, x23)) = 0 and J(α
f12,3
f ) =

J(αf )
f12,3, we get by applying J to (22)

Ad f(x12, x23) · J(αf )
f12,3 +

(
Ad f(x12, x23) ◦ α

f12,3
f

)
· J(αf )1,2 = J(αf )

f12,3 + J(αf )2,3.Applying the inverse of (22), we get
(α1,2

f )−1 · (α−1
f · J(αf ))

f12,3 + (α−1
f · J(αf ))1,2 = (α2,3

f )−1 · (α−1
f · J(αf ))1,f23 + (α−1

f · J(αf ))2,3Now αf (XY ) = XY implies that α1,2
f · t

f12,3 = t
f12,3 and similarly with 1, 2̃3, so δ̃(α−1

f ·

J(αf )) = 0. As T̂1
δ̃
→ T̂2 → ... is ayli in degree 2, there exists β ∈ T̂1 with valuation

≥ 2 suh that α−1
f · J(αf ) = δ̃(β), so J(αf ) = αf · δ̃(β). Now αf (XY ) = XY , αf (X) ∼ X ,

αf (Y ) ∼ Y imply that αf · δ̃(β) = δ̃(β), so J(αf ) = δ̃(β). It follows that J(αf ) has the form
δ̃(β) = 〈β(log(exey))− β(x) − β(y)〉.Remark 7.3. (22) an also be proved diretly, heking the identity on eah of the generatorsof F3(k) and using only the duality, hexagon and pentagon relations. This proof then extendsto the pro�nite and pro-l ases.8. The Jaobians of µΦ,O and αO

f8.1. Telesopi formulas. If O ∈ Ob(PaB) has the form O = • ⊗O′, with |O′| = n, thenone proves by using (4) that µO expresses diretly in terms of µΦ, for example
µ•((((••)(••))(•(••)))(••)) = µ1234567,89

Φ µ1234,567
Φ µ8,9

Φ µ12,34
Φ µ5,67

Φ µ1,2
Φ µ3,4

Φ µ6,7
Φ .The general formula is

µ•⊗O′ =
∏

n≥0

∏

ν∈N(T ′),d(ν)=n

µ
L(ν),R(ν)
Φ ;here T ′ is the binary planar rooted tree underlying O′; N(T ′) is the set of its nodes; d(ν)is the degree of ν (distane to the root of the tree); L(ν), R(ν) is the set of left and rightleaves of ν (these are disjoints subsets of {1, ..., n}). The �rst produt is taken aording toinreasing values of n (the order in the seond produt does not matter as the arguments ofthis produt ommute with eah other). Here is the tree orresponding to the above example(Figure 3):

8 9

764321

5
degree 3

degree 0

degree 1

degree 2Figure 3. There are 8 nodes



DRINFELD ASSOCIATORS AND SOLUTIONS OF THE KASHIWARA�VERGNE EQUATIONS 25Similarly, using (21), one proves that for f ∈ GT1(k), we have
α•⊗O′

f =
∏

n≥0

∏

ν∈N(T ′),d(ν)=n

α
L̃(ν),R̃(ν)
f .8.2. Computation of Jaobians. Let µn := µ•(•...(••)). Then:Proposition 8.1. J(µn) = 〈

∑n
i=1 log ΓΦ(xi)− log ΓΦ(

∑n
i=1 xi)〉.(We identi�ed µn with its omposition with exi 7→ Xi, whih belongs to TAutn.)Proof. We have µn = µ1,2...n

Φ ◦µ2,3...n
Φ ◦...◦µn−1,n

Φ . One then proves by desending indutionon k that J(µk,k+1...n
Φ ◦ ... ◦ µn−1,n

Φ ) = 〈
∑n

i=k log ΓΦ(xi) − log ΓΦ(
∑n

i=k xi)〉, using the fatthat the ation of µk,k+1...n
Φ on the various 〈log ΓΦ(xi)〉 as well as on 〈log ΓΦ(

∑n
i=k xi)〉 istrivial. �If now O ∈ Ob(PaB) is arbitrary with with |O| = n+ 1, then:Proposition 8.2. J(µΦ,O) = J(µn) = 〈

∑n
i=1 log ΓΦ(xi)− log ΓΦ(

∑n
i=1 xi)〉.Proof. We have µO = Ad ΦOn,O ◦ µn, where On = •(...(••)). We then use the oyleproperty of J , the above formula for J(µn), the fat that J(Ad g) = 0 for g ∈ exp(̂tn+1), andthe following lemma:Lemma 8.3. If g ∈ exp(̂tn+1), then (Ad g)(x1 + ...+ xn) ∼ x1 + ...+ xn.Proof of Lemma. Deompose a ∈ tn+1 as a0 + a1,2,...,n

1 , with a0 ∈ fn and a1 ∈ tn (themap a1 7→ a1,2,...,n
1 is the injetion tn → tn+1, tij 7→ tij). Then [tij , x1 + ... + xn] = 0 for

i, j ∈ {1, ..., n}, so [a1,2,...,n
1 , x1 + ... + xn] = 0, so [a, x1 + ... + xn] = [a0, x1 + ... + xn]. Itfollows that if g ∈ exp(̂tn+1), there exists xg ∈ exp(̂fn) suh that (Ad g)(x1 + ... + xn) =

g(x1 + ...+ xn)g−1. � �We then have:Proposition 8.4. J(αO
f ) = 〈

∑n
i=1 log Γf (logXi)− log Γf (log

∏n
i=1Xi)〉.Proof. Fix Φ ∈ M1(k). We have µO

f∗Φ = µO
Φ ◦ α

O
f , so J(µO

f∗Φ) = J(µO
Φ) + µO

Φ ◦ J(α)O
f . Itfollows that µO

Φ ◦J(α)O
f = 〈

∑n
i=1 log Γf(xi)− log Γf (

∑n
i=1 xi)〉. The result then follows from

µO
Phi(Xi) ∼ exi , µO

Φ(X1...Xn) ∼ ex1+...+xn. �Remark 8.5. In [AT℄, the Lie subalgebra sdern ⊂ tdern of speial derivations (normalizedspeial in the terms of Ihara) was introdued: sdern = {u ∈ tdern|u(x1 + ... + xn) = 0}.Let ˜sdern be the intermediate Lie algebra ˜sdern = {u ∈ tdern|∃u0 ∈ fn−1|u(x1 + ... + xn) =
[u0, x1 + ... + xn]} (speial derivations in Ihara's terms). So sdern ⊂ ˜sdern ⊂ tdern. ThenLemma 8.3 says that we have a diagram

tn → sdern

↓ ↓
tn+1 → ˜sdern →֒ tdernRemark 8.6. Set SolKVn(k) := {µn ∈ TAutn |µn(ex1 ...exn) = ex1+...+xn and ∃r ∈ u2

k[[u]]|J(µn) =
〈r(

∑
i xi) −

∑
i r(xi)〉}. This is a torsor under the ation of the groups KVn(k) := {αn ∈

TAutn |αn(ex1 ...exn) = ex1 ...exn and ∃σ ∈ u2
k[[u]]|J(α) = 〈σ(log ex1 ...exn) −

∑
i σ(xi)〉}and KRVn(k) de�ned similarly (replaing ex1 ...exn by ex1+...+xn). These are prounipo-tent groups; the Lie algebra of KRVn(k) is krvn := {u ∈ tdern|a(

∑
i xi) = 0 and ∃s ∈

u2
k[[u]]|j(a) = 〈s(

∑
i xi)−

∑
i s(xi)〉}. It ontains as a Lie subalgebra krv0

n := {a ∈ krvn|s =
0}, whih is denoted kvn in [AT℄. One an prove that if |O′| = n and O = • ⊗O′, the map
M1(k)→ SolKVn(k), Φ 7→ µΦ,O is a morphism of torsors.



26 A. ALEKSEEV, B. ENRIQUEZ, AND C. TOROSSIAN9. Analyti aspetsIn this setion, the base �eld k is R or C.9.1. Analyti germs. We set R+{{x}} := {f ∈ R+[[x]]|f has posititive radius of onvergene}and R+{{x}}0 := {f ∈ R+{{x}}|f(0) = 0}. If f, g ∈ R+[[r]], we write f � g i� g−f ∈ R+[[r]].We de�ne f � g similarly when f, g ∈ R+[[r1, ..., rn]].Let V,E be �nite dimensional vetor spaes and let |.|V , |.|E be norms on V,E. Thespae of E-valued formal series on V is E[[V ]] = {f =
∑

n≥0 fn, fn ∈ Sn(V ∗) ⊗ E}.For fn ∈ Sn(V ∗) ⊗ E, viewed as an homogeneous polynomial V → E, we set |fn| :=
supv 6=0(|fn(v)|E/|v|nV ). An analyti germ on V (at the neighborhood of 0) is a series
f ∈ E[[V ]], suh that |f |(r) :=

∑
n≥0 |fn|rn ∈ R+{{r}}. We denote by E{{V }} ⊂ E[[V ]]the subspae of analyti germs, and by E{{V }}0 ⊂ E[[V ]]0 the subspae de�ned by f0 = 0.If f ∈ E{{V }} and α =

∑
n≥0 αnr

n ∈ R+[[r]]0, we say that α is a dominating series for fis |fn| ≤ αn for any n; we write this as |f(v)|E � α(|v|V ).If V1, ..., Vk are �nite dimensional vetor spaes with norms |.|V1 , ..., |.|Vk
, then we equip

V1⊕...⊕Vk with the norm |(v1, ..., vk)| := supk |vi|Vi
. If f is an analyti germ V1⊕...⊕Vk → E,we deompose f =

∑
n∈Nk fn, where fn : V1 × ... × Vk → E is the n-multihomogeneousomponent of f . We then set

|fn| := sup(x1,...,xk)∈
Q

i
(Vi−{0}) |fn(x1, ..., xk)|E/|x1|

n1

V1
...|xk|

nk

Vk
.Then f is an analyti germ i� |f |(r1, ..., rn) :=

∑
n
|fn|r

n1
1 ...rnk

k ∈ R+[[r1, ..., rk]] onverges ina polydis. If α =
∑

n1,...,nk≥0 αn1,...,nk
rn1
1 ...rnk

k ∈ R+[[r1, ..., rk]], we write |f(v1, ..., vk)|E �

α(|v1|V1 , ..., |vk|Vk
) if for eah n, |fn(v1, ..., vk)|E ≤ αn(|v1|V1 , ..., |vk|Vk

).Let now g be a �nite dimensional Lie algebra; let |.| be a norm on g; let M > 0 be suhthat the identity |[x, y]| ≤M |x||y| holds.The speialization to g of the Campbell�Baker�Hausdor� series is a series x∗y = cbh(x, y) ∈
g[[g× g]]0.Lemma 9.1. 1) The CBH series is an analyti germ g×g→ g; we have |x∗y| � 1

M f(M(|x|+

|y|)), where f(u) =
∫ u

0 −
ln(2−ev)

v dv.2) g× g→ g, (x, y) 7→ eadx(y) is an analyti germ, and |eadx(y)| � eM|x||y|.Proof. 1) is proved as in [Bk℄, not making use of the �nal majorization 1
r+s ≤ 1. UsingDynkin's formula, one an prove that 2) follows from |(adx)n(y)| ≤Mn|x|n|y|. �9.2. TAutan

n (g) and tderan
n (g). We set TAutn(g) := {(a1, ..., an)|ai ∈ g[[gn]]0} and de�ne onthis set a produt by (a1, ..., an)(b1, ..., bn) := (c1, ..., cn), where

ci(x1, ..., xn) := bi(e
ad a1(x1,...,xn)(x1), ..., e

ad an(x1,...,xn)(xn)) ∗ ai(x1, ..., xn).This equips TAutn(g) with a group struture. We set TAutan
n (g) := {(a1, ..., an)|ai ∈

g{{gn}}0}.Proposition 9.2. TAutan
n (g) is a subgroup of TAutn(g).Proof. Let (a1, .., an) and (b1, ..., bn) belong to TAutan

n (g). Let α(r), β(r) ∈ R+{{r}}0be germs suh that the identities |ai(x1, ..., xn)| � α(supi |xi|), |bi(x1, ..., xn)| � β(supi |xi|)hold. Then
|ci(x1, ..., xn)| � fM (|ai(x1, ..., xn)|+ |bi(e

ad a1(x1), ..., e
ad an(xn))|)

� fM (α(supi |xi|) + β(eMα(supi |xi|) supi |xi|)) = γ(supi |xi|),where fM (u) = 1
M f(Mu) and γ(r) = fM (α(r) + eMα(r)β(r)) has nonzero radius of onver-gene. Here we use the ompatibility of norms with omposition: namely, if f ∈ E[[V1 ×

.. × Vn]]0 and gi ∈ Vi[[W ]]0, with |f(v1, ..., vn)| � α(|v1|, ..., |vn|) and |gi(w)| � βi(|w|),then h := f ∈ (g1, ..., gn) ∈ E[[W ]]0 and |h(w)| � α ◦ (β1, ..., βn)(|w|). We also use the



DRINFELD ASSOCIATORS AND SOLUTIONS OF THE KASHIWARA�VERGNE EQUATIONS 27non-dereasing properties of elements of R+[[r1, ..., rn]]0 (i.e., if F ∈ R+[[u1, ..., uk]]0 and
ui, u

′
i ∈ R+[[r1, ..., rl]]0 with ui � u′i, then F (u1, ...) � F (u′1, ...). So (a1, ..., an)(b1, ..., bn) ∈

TAutan
n (g).If now (a1, ..., an) ∈ TAutan

n (g), then its inverse (b1, ..., bn) in TAutn(g) is uniquely deter-mined by the identities
bi(x1, ..., xn) = −ai(e

ad b1(x1,...,xn)(x1), ...., e
ad bn(x1,...,xn)(xn)).Let us show that eah bi(x1, ..., xn) is an analyti germ. For this, we de�ne indutively thesequene b(k) = (b

(k)
1 , ..., b

(k)
n ) by b(0) = (0, .., 0), and

b
(k+1)
i (x1, ..., xn) = −ai(e

ad b
(k)
1 (x1,...,xn)(x1), ...., e

ad b(k)
n (x1,...,xn)(xn)).One heks that b(k) = b(k−1) + O(xk), so the sequene (b(k))k≥0 onverges in the formalseries topology; the limit b is then the inverse of a = (a1, ..., an).Let us now set βk := supi |b

(k)
i | (if ui(r) =

∑
k≥0 ui,kr

k ∈ R+[[r]] is a �nite family, we set
(supi ui)(r) :=

∑
k≥0(supi ui,k)rk). We then have

|b
(k+1)
i (x1, ..., xn)| � α(supi |e

ad b
(k)
i (x1,...,xn)(xi)|) � α(eMβk(supi |xi|) supi |xi|),so βk+1(r) � α(eβk(r)r).We now de�ne a sequene (γk)k≥0 of elements of R+[[r]]0 by γ0 = 0,

γk+1(r) = α(eMγk(r)r).As the exponential funtion, mutipliation by r and α are non-dereasing, we have βk � γk.On the other hand, we have γk(r) = γk−1(r) + O(rk), so the sequene (γk)k onverges in
R+[[r]]0 (one also heks that this sequene is non-dereasing). Its limit γ then satis�es(23) γ(r) = α(eMγ(r)r).It is easy to show that (23) determines γ(r) ∈ R[[r]]0 uniquely. On the other hand, thefuntion (γ, r) 7→ γ − α(eMγr) =: F (γ, r) is analyti at the neighborhood of (0, 0), withdi�erential at this point ∂γF (0, 0)dγ + ∂rF (0, 0)dr = dγ −Mα′(0)dr. We may then applythe impliit funtion theorem and use the fat that the dγ-omponent of dF (0, 0) is nonzeroto derive the existene of an analyti funtion γan(r) satisfying (23). By the uniqueness ofsolutions of (23), we get that the expansion of γan is γ, so γ ∈ R+{{r}}0.Now |b(k)

i (x1, ..., xn)| � βk(supi |xi|) � γk(supi |xi|) � γ(supi |xi|), so by taking the limit
k →∞, |bi(x1, ..., xk)| � γ(supi |xi|), whih implies that bi ∈ g{{gn}}0, as wanted. �Aording to [AT℄, we have a bijetion

κ : TAutn → tdern, g 7→ ℓ− gℓg−1,where ℓ is the derivation given by xi 7→ xi.Set tdern(g) := {(u1, ..., un)|ui(x1, ..., xn) ∈ g[[gn]]0}, and tderan
n (g) := {(u1, ..., un)|ui ∈

g{{gn}}0} ⊂ tdern(g). We have maps TAutn → TAutn(g), tdern → tdern(g) indued by thespeialization of formal series.Lemma 9.3. 1) There exists a map κg : TAutn(g)→ tdern(g), suh that the diagram
TAutn

κ
→ tdern

↓ ↓

TAutn(g)
κg

→ tdern(g)ommutes.2) This map restrits to a map κan
g : TAutan

n (g)→ tderan
n (g).



28 A. ALEKSEEV, B. ENRIQUEZ, AND C. TOROSSIANProof. 1) If ai, bi ∈ f̂n are suh that g = [[eb1 , ..., ebn ]], g−1 = [[ea1 , ..., ean ]], then κ(g) =
u = [[u1, ..., un]], with

ui(x1, ..., xn) = (
1 − eadai

adai
(ȧi))(e

ad b1(x1,...,xn)(x1), ..., e
ad bn(x1,...,xn)(xn))and ȧi = ℓ(ai) = d

dt |t=1
ai(tx1, ..., txn). So we de�ne κg by the same formula, where ȧi is nowde�ned as d

dt |t=1
ai(tx1, ..., txn) (or ∑

k≥0 ka
k
i , where ak

i is the degree n part of ai).2) If the funtions ai, bi are analyti germs, then so is ȧi and therefore also eah ui. �Reall also from [AT℄ that if µ ∈ TAut2, µ(x∗y) = x+y and J(µ) = 〈r(x)+r(y)−r(x+y)〉(i.e., µ ∈ SolKV(k)), then u := −κ(µ−1) = [[A(x, y), B(x, y)]] satis�es:(KV1) x+ y − y ∗ x = (1− e− ad x)(A(x, y)) + (ead y − 1)(B(x, y)),(KV3) j(u) = 〈φ(x) + φ(y)− φ(x ∗ y)〉, where φ(t) = tr′(t).Let ΦKZ be the KZ assoiator, Φ̃KZ(a, b) := ΦKZ(a/(2π i), b/(2π i)) ∈ M1(C) and µKZ :=
µΦ̃KZ

. Let uKZ := κ(µ−1
KZ). Then J(µKZ) = 〈rKZ(x) + rKZ(y)− rKZ(x ∗ y)〉, where rKZ(u) =

−
∑

n≥2(2π i)−nζ(n)un/n, therefore
j(uKZ) = 〈φKZ(x) + φKZ(y)− φKZ(x ∗ y)〉,where φKZ(u) = −

∑
n≥2(2π i)−nζ(n)un. Now the real part of this funtion (obtained bytaking the real part of the oe�ients of un) is

φR
KZ(u) =

1

2
(

u

eu − 1
− 1 +

u

2
).Let us now set uR := [[AR(x, y), BR(x, y)]], where the real part is taken with respet to thenatural real struture on fC2 . Then by the linearity of (KV1), (KV3), we have:

(KV1) x+ y − y ∗ x = (1− e− ad x)(AR(x, y)) + (ead y − 1)(BR(x, y))

(KV3) j(uR) =
1

2
〈

x

ex − 1
+

y

ey − 1
−

x ∗ y

ex∗y − 1
− 1〉.9.3. Analyti aspets to the KV onjeture (proof of Theorem 2.8). Reall that

log Φ̃KZ ∈ f̂2. We denote the speialization of this series to the Lie algebra g as (log Φ̃KZ)g ∈
g[[g2]]0.Proposition 9.4. (log Φ̃KZ)g is an analyti germ, i.e., (log Φ̃KZ)g ∈ g{{g2}}0.Proof. Reall that A2 = U(f2) is the free assoiative algebra in a, b. For x ∈ A2, set

|x|A2 := supN≥1 supm1,m2∈MN (C) ||x(m1,m2)||.Here ||.|| is an algebra norm on MN (C). Then |x|A2 is ≤ ∑
I∈⊔n≥0{0,1}n |xI |, where x =∑

I xIeI , and for I = (i1, ..., in), eI = ei1 ...ein
, e0 = a, e1 = b. It follows from the Amitsur�Levitsky theorem ([AL℄) that (|x|A2 = 0)⇒ (x = 0); indeed, by this theorem, x(m1,m2) = 0for m1,m2 ∈MN(C) implies: (a) that x is in the 2-sided ideal generated by ab−ba if N = 1;(b) that x = 0 if N > 1. It follows that |.|A2 is an algebra norm9 on A2, in partiular

|xy|A2 ≤ |x|A2 |y|A2 .We then de�ne a vetor spae norm |.|f2 on f2 by |x|f2 := |x|A2 ; we have |[x, y]f2 ≤
2|x|f2 |y|f2 .For n = (n1, ..., nd) ∈ Nd, and f a funtion on (f2)

d (resp., Rd), we denote by f(ξ1, ..., ξd)n(resp., f(t1, ..., td)n) the n-multihomogeneous part of f , whih we view as a multihomoge-neous polynomial on (f2)
d (resp., Rd).Lemma 9.5. For any n, we have the identity

| log(eξ1 ...eξd)n|f2 ≤ ((log(2− et1+...+td)−1)n)t1=|ξ1|f2 ,...,td=|ξd|f2
.9We will not use (|x|A2

= 0) ⇒ (x = 0), so our proof is independent of the Amitsur�Levitsky theorem.
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1 ...ξnd

d |A2 ≤ |ξ1|
n1

f2
...|ξd|

nd

f2
so

|(eξ1 ...eξd − 1)n|A2 ≤ ((et1+...+td − 1)n)t1=|ξ1|f2 ,...,td=|ξd|f2
.Then log(eξ1 ...eξd)n =

∑
k≥1

(−1)k+1

k

∑
(n1,...,nk)|n1+...+nk=n

(eξ1 ...eξd−1)n1 ...(e
ξ1 ...eξd−1)nkso

| log(eξ1 ...eξd)n|A2 ≤
( ∑

k≥1

1

k

∑

n1+...+nk=n

(et1+...+td − 1)n1 ...(e
t1+...+td − 1)nd

)
t1=|ξ1|f2 ,...,td=|ξd|f2

=
( ∑

k≥1

1

k
((et1+...+td − 1)k)n

)
t1=|ξ1|f2 ,...,td=|ξd|f2

= ((log(2− et1+...+td)−1)n)t1=|ξ1|f2 ,...,td=|ξd|f2
.

�Let a(t) be an funtion [0, 1]→ f̂2 of the form a(t) =
∑

k≥1 ak(t), where ak(t) ∈ f2[k] (here
k is the total degree in a, b) and ∫ 1

0
|ak(t)|f2dt <∞. Let u0, u1 be solutions of u′(t) = a(t)u(t)with u0(0) = u1(1) = 1, and U := u−1

1 u0.Lemma 9.6. For n ≥ 1, let (logU)n the degree n (in a, b) part of logU . Then
∑

n≥1

|(logU)n|f2r
n � log(2− e

P

k≥1 rk
R 1
0
|ak(t)|f2dt)−1.Proof of Lemma. Let Lie(n) be the multilinear part of fn in the generators x1, ..., xn. Wedenote by wn(x1, ..., xn) ∈ Lie(n) the multilinear part of log(ex1 ...exn).Let now αn be the oe�ient of t1...tn in the expansion of log(2 − et1+...+tn)−1 (this isalso the nth derivative at t = 0 of log(2 − et)−1). Speializing Lemma 9.5 for n = (1, .., 1),we get the identity

|wn(ξ1, ..., ξn)|f2 ≤ αn|ξ1|f2 ...|ξn|f2for ξ1, ..., ξn ∈ f2.Now logU expands as
logU =

∑

n≥0

∫

0<t1<...<tn<1

wn(a(t1), ..., a(tn))dt1...dtn(see e.g. [EG℄). It follows that
(logU)k =

∑

n≥0

∑

k1,...,kn|
P

i ki=k

∫

0<t1<...<tn<1

wn(ak1(t1), ..., akn
(tn))dt1...dtnand therefore

|(logU)k|f2 ≤
∑

n≥0

αn

∑

k1,...,kn|
P

i
ki=k

∫

0<t1<...<tn<1

|ak1(t1)|f2 ...|akn
(tn)|fn

dt1...dtn.Now the generating series for the r.h.s. is log(2− e
P

k≥1 rk
R

1
0
|ak(t)|f2dt)−1, proving the result.

�Aording to [Dr℄, Setion 2, if we set
a(t) :=

∑

k≥0,l≥1

1

k!l!(2π i)k+l+1

(− log(1− t))k(− log t)l

t− 1
(ad b)k(ada)l(b),then Φ̃KZ = U . We have |(ad b)k(ada)l(b)|f2 ≤ k + l + 2 ≤ 2k+l+1, so

|an(t)| ≤
∑

k≥0,l≥1,k+l+1=n

1

πk+l+1k!l!

(− log(1− t))k(− log t)l

1− t



30 A. ALEKSEEV, B. ENRIQUEZ, AND C. TOROSSIANThen we have the inequality of formal series in r
∑

n≥1

rn

∫ 1

0

|an(t)|f2dt �

∫ 1

0

∑

k≥0,l≥1

rk+l+1

πk+l+1k!l!

(− log(1− t))k(− log t)l

1− t
dt

=
r

π

∫ 1

0

(1− t)−1− r
π (t−

r
π − 1)dt.Now the identity ∫ 1

0 t
a(1 − t)bdt = Γ(a+1)Γ(b+1)

Γ(a+b+2) , valid for ℜ(a),ℜ(b) > −1, implies that if
ℜ(r) < 0, then

r

π

∫ 1

0

(1− t)−1− r
π (t−

r
π − 1)dt =

1

2

(
1−

Γ(1− 2r)2

Γ(1− 4r)

)
.This implies that the radius of onvergene of r

π

∫ 1

0
(1 − t)−1− r

π (t−
r
π − 1)dt is 1/4, so thisseries belongs to R+{{r}}0. Plugging this in Lemma 9.6, we get

∑

n≥0

|(log Φ̃KZ)n|f2r
n � log(2− e

1
2

(
1−Γ(1−2r)2

Γ(1−4r)

)
)−1,where the series in the r.h.s. lies in R+{{r}}0 (being a omposition of two series in R+{{r}}0).Let us now prove that (log Φ̃KZ)g ∈ g{{g2}}0 is an analyti germ. By Ado's theorem, thereexists a injetive morphism ρ : g→MN(k), where k = R or C, hene an injetive morphism

ρ̃ : g → MN(C). Equip g with the norm |x|g := ||ρ̃(x)||. We reall that all the norms on gare equivalent, so it will su�e to prove analytiity w.r.t. |.|g.The degree n part of the series (log Φ̃KZ)g is the speialization to g of (log Φ̃KZ)n. Now if
ψ ∈ f2[n] and ψg : g×g→ g is its speialization to g, we have |ψg(x, y)|g = ||ψ(ρ̃(x), ρ̃(y))|| ≤
|ψ|f2 sup(||ρ̃(x)||, ||ρ̃(y)||)n = |ψ|f2 sup(|x|g, |y|g)n, therefore |ψg| ≤ |ψ|f2 . We then have

∑

n≥0

|(log Φ̃KZ)g
n|r

n �
∑

n≥0

|(log Φ̃KZ)n|f2r
n � log(2− e

1
2

(
1−Γ(1−2r)2

Γ(1−4r)

)
)−1;together with the fat that the series in the right has positive radius of onvergene, thisimplies the analytiity of the series (log Φ̃KZ)g. �Proposition 9.4, together with the loal analytiity of the CBH series, implies that thespeialization of µΦ̃KZ

belongs to TAutan
2 (g). It follows that A(x, y), B(x, y) are analytigerms, and so(KV2) (AR, BR) is an analyti germ g2 → g2.All this implies that (AR, BR) is a solution of the `original' KV onjeture (as formulatedin [KV℄) and proves 1) in Theorem 2.8.Let us now prove Theorem 2.8, 2). One heks easily that if (A,B) is a solution of the`original' KV onjeture, then (As, Bs) := (A + s(log(exey) − x), B + s(log(exey) − y)) isa family of solutions. In fat, if µ ∈ SolKV(k) and [[A,B]] = −κ(µ−1), then [[As, Bs]] =

−κ(µ−1
−s), where µs := Inn(es(x+y)) ◦ µ; this orresponds to the ation of `trivial', degree 1element of krv on SolKV (see[AT℄).Finally, let us prove Theorem 2.8, 3). Let σ be the antilinear automorphism of f̂2 suh that

σ(x) = −y, σ(y) = −x. The series ΦKZ(a, b) is real, therefore Φ̃KZ(a, b) = Φ̃KZ(−a,−b) (thebar denotes the omplex onjugation). This implies that µKZ ◦ σ = Inn(e−(x+y)/2) ◦ σ ◦µKZ.Using σ ◦ ℓ ◦ σ−1 = ℓ and ℓ(x+ y) = x+ y, we get
(µKZ ◦ σ ◦ µ

−1
KZ) ◦ ℓ ◦ (µKZ ◦ σ ◦ µ

−1
KZ)−1 = ℓ+ inn(

1

2
(x+ y)),where inn(x+y) is the inner derivation z 7→ [x+y, z] of f̂2. Using now µ−1

KZ(x+y) = log(exey),we get
(σ ◦ µ−1

KZ) ◦ ℓ ◦ (σ ◦ µ−1
KZ)−1 = µ−1

KZ ◦ ℓ ◦ µKZ + inn(
1

2
log(exey)).



DRINFELD ASSOCIATORS AND SOLUTIONS OF THE KASHIWARA�VERGNE EQUATIONS 31Sine σ ◦ ℓ ◦ σ−1 = ℓ, µ−1 ◦ ℓ ◦ µ− ℓ = −[[AKZ, BKZ]] and inn(1
2 log(exey)) = [[12 (log(exey)−

x), 1
2 (log(exey)− y)]]

σ ◦ [[AKZ, BKZ]] ◦ σ−1 = [[AKZ, BKZ]]− [[
1

2
(log(exey)− x),

1

2
(log(exey)− y)]].This implies

(BKZ(−y,−x), AKZ(−y,−x)) = (AKZ(x, y), BKZ(x, y))−(
1

2
(log(exey)−x),

1

2
(log(exey)−y)).If now (A′, B′) := (AKZ, BKZ)− 1

4 (log(exey)− x, log(exey)− y), this implies
(B′(−y,−x), A′(−y,−x)) = (A′(x, y), B′(x, y)),whih by taking real parts implies (B−1/4(−y,−x), A−1/4(−y,−x)) = (A−1/4(x, y), B−1/4(x, y)),proving Theorem 2.8, 3).Appendix A. Results on entralizersA.1. The entralizer of tij in tn.Proposition A.1. Let i < j ∈ [n]. If x ∈ tn is suh that [x, tij ] = 0, then there exists λ ∈ kand y ∈ tn−1 suh that x = λtij + yij,1,2,...,̌i,...,ǰ,...,n.Proof. We may and will assume that i = 1, j = 2. We then prove the result by indutionon n. It is obvious when n = 2. Assume that it has been proved at step n−1 and let us proveit at step n. We have tn = tn−1⊕ fn−1, where tn−1 is the Lie subalgebra generated by the tij ,

i 6= j ∈ {1, ..., n− 1} and fn−1 is freely generated by the t1n, ..., tn−1,n. Both tn−1 and fn−1are Lie subalgebras of tn, stable under the inner derivation [t12,−]. Then if x ∈ tn is suhthat [t12, x] = 0, we deompose x = x′ + f , with x′ ∈ tn−1, f ∈ fn−1, [t12, x
′] = [t12, f ] = 0.By the indution hypothesis, we have x′ = λt12 + (y′)12,3,...,n−1, where y′ ∈ tn−2 and λ ∈ k.Let us set xi = tin for i = 1, ..., n − 1. The derivation [t12,−] of fn−1 is given by

x1 7→ [x1, x2], x2 7→ [x2, x1], xi 7→ 0 for i > 2. In terms of generators y1 = x1, y2 = x1 + x2,
y3 = x3..., yn−1 = xn−1, it is given by y1 7→ [y1, y2], yi 7→ 0 for i > 1.Lemma A.2. The kernel of the derivation y1 7→ [y1, y2], yi 7→ 0 for i > 1 of fn−1 oinideswith the Lie subalgebra fn−2 ⊂ fn−1 generated by y2, ..., yn−1.Proof of Lemma. Let us prove that the kernel of the indued derivation of U(fn−1) is
U(fn−2). We have a linear isomorphism U(fn−1) ≃ ⊕k≥1U(fn−2)

⊗k, whose inverse takes
u1⊗ ...⊗uk to u1y1u2y1...y1uk. The derivation [t12,−] of U(fn−1) is then transported to thediret sum of the endomorphisms of U(fn−2)

⊗k(24) u 7→ (y
(2)
2 + ...+ y

(k)
2 )u− u(y

(1)
2 + ...+ y

(k−1)
2 )(this is 0 of k = 1; y(i)

2 = 1⊗i−1 ⊗ y2 ⊗ 1⊗k−i; we make use of the algebra struture of
U(fn−2)

⊗k). Eah of these endomorphisms has degree 1 for the �ltration of U(fn−2)
⊗kindued by the PBW �ltration of U(fn−2) (the part of degree≤ d of U(fn−2) for this �ltrationonsists of ombinations of produts of ≤ d elements of fn−2) and the assoiated gradedendomorphism of S(fn−2)

⊗k is the multipliation by y(k)
2 − y

(1)
2 , whih is injetive if k ≥ 1,so (24) is injetive for k ≥ 1; the kernel of the diret sum of maps (24) therefore oinideswith the degree 1 part U(fn−2), whih transports to U(fn−2) ⊂ U(fn−1). So the kernel ofthe derivation [t12,−] of U(fn−1) is U(fn−2). The kernel of the derivation [t12,−] of fn−1 isthen fn−1 ∩ U(fn−2) = fn−2. �End of proof of Proposition A.1. It follows that f expresses as P (t1n + t2n, t3n, ..., tn−1,n).Then if we set f ′ := P (t1,n−1, ..., tn−2,n−1), we get f = (f ′)12,3,...,n so x = x′ + f = λt12 +

((y′)1,2,...,n−1 + f ′)12,3,...,n, as wanted. �



32 A. ALEKSEEV, B. ENRIQUEZ, AND C. TOROSSIANA.2. The entralizer of xij in PBn.Proposition A.3. If g ∈ PBn(k) ommutes with x12, then there exists λ ∈ k and h ∈

PBn−1(k) suh that g = xλ
12h

f12,3,...,n.Sine xij is onjugated to x12, it is easy to derive from this the entralizer of xij in PBn(k).Proof. Note that x12 ommutes with the image of PBn−1(k) → PBn(k), h 7→ h
f12,3,...,n,so that U0 := {xλ

12h
f12,3,...,n|h ∈ PBn−1(k), λ ∈ k} is an algebrai subgroup of PBn(k). Let

U ⊂ PBn(k) be the entralizer of x12; then U0 ⊂ U , and we need to prove that U0 = U .We have U0 = exp(u0), U = exp(u), where u0 = k log x12⊕Im(pbn−1

f12,3,...,n
→ pbn) and u =

{x ∈ pbn|[log x12, x] = 0}, where pbn := Lie PBn(k). Then the lower entral series de�nes aomplete dereasing �ltration of pbn, with F 1pbn = pbn and F i+1pbn = [pbn, F
ipbn]. Theassoiated graded Lie algebra is tn, i.e., tn = ⊕i≥1tn[i] = ⊕i≥1F

ipbn/F
i+1pbn.Set F iu := u ∩ F ipbn, F iu0 := u0 ∩ F ipbn. We will prove that the images of F iu0 and

F iu in tn[i] oinide. Clearly, Im(F iu0 → tn[i]) ⊂ Im(F iu→ tn[i]).Conversely, projeting the identity [log x12, x] = 0 modulo F i+1pbn, we get(25) Im(F iu→ tn[i]) ⊂ {x ∈ tn[i]|[t12, x] = 0},and sine x 7→ x
f12,...,n takes F ipbn−1 to F ipbn, we have (F ipbn−1)

f12,...,n ⊂ F iu0 if i > 1 and
(F 1pbn−1)

f12,...,n ⊕ k log x12 ⊂ F 1u0; projeting these inlusions, modulo F i+1pbn, we get(26)
Im(F iu0 → tn[i]) ⊃ tn−1[i]

12,...,n if i > 1 and Im(F 1u0 → tn[i]) ⊃ tn−1[1]12,...,n ⊕ kt12.Using (25), (26) and Proposition A.1, we get Im(F iu→ tn[i]) ⊂ Im(F iu0 → tn[i]). It followsthat these spaes are equal, whih implies (as both u0 and u are losed for the topology of
pbn) that u0 = u. So U0 = U . �Remark A.4. One an also prove Proposition A.3 similarly to Proposition A.1, by indu-tion on n and using the fat that the automorphism Adx12 of the topologially free groupgenerated by the xin identi�es with the automorphism exp(ad t12) of the topologially freeLie algebra generated by the tin (using the identi�ation (x1n, x1nx2n, x3n, ..., xn−1,n) ↔
(et1n , et1n+t2n , et3n , ..., etn−1,n)). Referenes[AM1℄ A. Alekseev, E. Meinrenken, Poisson geometry and the Kashiwara-Vergne onjeture, C. R. Math.Aad. Si. Paris 335 (2002), no. 9, 723-728.[AM2℄ A. Alekseev, E. Meinrenken, On the Kashiwara�Vergne onjeture, Invent. Math. 164 (2006), no.3, 615-634.[AT℄ A. Alekseev, C. Torossian, The Kashiwara�Vergne onjeture and Drinfeld's assoiators,arXiv:0802.4300.[AL℄ A. Amitsur, J. Levitsky, Minimal identities for algebras, Pro. Amer. Math. So. 1 (1950), 449-463.[B℄ D. Bar-Natan, On assoiators and the Grothendiek�Teihmüller group. I., Seleta Math. (N.S.) 4(1998), no. 2, 183-212.[Bk℄ N. Bourbaki, Élements de mathématique. XXVI. Groupes et algèbres de Lie. Chapitre 1: Algèbresde Lie. Atualités Si. Ind. No. 1285. Hermann, Paris 1960.[CE℄ D. Calaque, P. Etingof, Letures on tensor ategories, `Quantum groups', IRMA Let. Math. Theor.Phys., 12, Eur. Math. So., Zürih, 2008; arXiv:math/0401246.[DT℄ P. Deligne, T. Terasoma, Harmoni shu�e relation for assoiators,www2.li�.fr/mzv2005/DOC/Terasoma/lille_terasoma.pdf.[Dr℄ V. Drinfeld, On quasitriangular quasi-Hopf algebras and a group losely onneted with Gal(Q̄/Q),Leningrad Math. J. 2 (1991), 829-860.[E℄ B. Enriquez, On the Drinfeld generators of grt1(k) and Γ-funtions for assoiators,arXiv:math/0502084, Math. Res. Let. 13 (2006), no. 2-3, 231-243.[EG℄ B. Enriquez, F. Gavarini, A formula for the logarithm og the KZ assoiator, SIGMA 2 (2006), Paper080, in memory of V. Kuznetsov.
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