arXiv:0903.4067v1l [math.QA] 24 Mar 2009

DRINFELD ASSOCIATORS, BRAID GROUPS AND EXPLICIT
SOLUTIONS OF THE KASHIWARA-VERGNE EQUATIONS

A. ALEKSEEV, B. ENRIQUEZ, AND C. TOROSSIAN

ABsTrRACT. The Kashiwara—Vergne (KV) conjecture states the existence of solutions of
a pair of equations related with the Campbell-Baker—Hausdorff series. It was solved by
Meinrenken and the first author over R, and in a formal version, by the first and last
authors over a field of characteristic 0. In this paper, we give a simple and explicit formula
for a map from the set of Drinfeld associators to the set of solutions of the formal KV

equations. Both sets are torsors under the actions of prounipotent groups, and we show 'f'O /JO/.S z
°

that this map is a morphism of torsors. When specialized to the KZ associator, our
construction yields a solution over R of the original KV conjecture.

INTRODUCTION

In [KV], M. Kashiwara and M. Vergne formulated a conjecture on the form of the
Campbell-Baker-Hausdorff (CBH) series. This conjecture triggered the work of several
authors (for a review see [T2]). In particular, Kashiwara—Vergne settled it for solvable
Lie algebras ([KV]), Rouviére gave a proof for sly ([R]), and Vergne ([V]) and Alekseev—
Meinrenken (J[AM1]) proved it for quadratic Lie algebras. All these constructions lead to
explicit rational formulas for solutions of the KV conjecture. The general case was settled in
the positive by Alekseev—Meinrenken ([AM2]) using Kontsevich’s deformation quantization
theory and results in [T1]. The corresponding solution is defined over R, and expresses as
an infinite series where coefficients are combinations of Kontsevich integrals on configuration
spaces and integrals over simplices. The values of most of these coefficients remain unknown.

Later, the first and last authors gave another proof ([AT]), based on Drinfeld’s theory of
associators. In that paper, the Kashiwara—Vergne (KV) conjecture was reformulated as the
problem of constructing special automorphisms of the free Lie algebra with two generators
with coboundary Jacobian (see Section 2); the authors also showed that each associator
gives rise to an affine line of such automorphisms. The solution is defined as a nonabelian
cochain with coboundary equal to the associator. Such a construction is inspired by thel
theory of quantization of Lie bialgebras, and the existence problem is solved by showing that
obstructions vanish in all degrees.

The purpose of the present work is to give a direct construction of the map M;(k) —
SolKV(k), ® — ug from associators to solutions of the KV equations (we work over a field
k of characteristic 0). Namely, for ® € M;(k), ue is the automorphism of the topologically
free Lie algebra generated by z,y given by
(1)

pa s x— O(, —z—y)rd(z, —z—y) "',y e TPy, —x—y)yd(y, —z—y) TV,

Our main result (Theorem 2.1) is the identity

(2) O(tia, t2s) o g " 0 pg” = Hg o g

This identity implies that the Jacobian of ug is a cocycle, and therefore a coboundary
according to cohomology computations in [AT]; it can then be expressed using the I'-function
Iy of @ (see [DT, EJ]). Identity (2) also implies that ue is special, i.e., satisfies

(3) pa(log(e®e?)) =z +y

rap. C-.//?L’
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(see Subsection 5.2 and also Proposition 7.4 in [AT]); we also give a direct proof of (3) based
on the hexagon and duality identities satisfied by ®. The conjunction of (3) and of the fact
that the Jacobian of ug is a coboundary actually means that pe is a solution of the KV
equations introduced in [AT].

The affine line of solutions of the KV equations attached in [AT] to ® then takes the
form {Inn(e***¥)) o g, s € k}, where Inn(g) = (u — gug~'). It remains an open question
whether all the solutions of the KV equation are of this form.

The strategy for proving (2) is as follows. For each associator ® and each parenthe-
sization O of a word in n identical letters (the letter is ), Drinfeld and Bar-Natan define
an isomorphism i : PB, (k) — exp(t,) from the prounipotent completion of the pure
braid group with n strands to the group associated with the holonomy Lie algebra. Note
that PB,, contains the free group F,_1 as a normal subgroup, while t,, contains the free
Lie algebra f,_1 as an ideal; we show that the above isomorphisms restrict to isomorphisms
1S Fp_1(k) — exp(f,_1) (in the case of the left parenthesization, this was proved in [HM]).
We note that ue may be interpreted as the isomorphism Fa(k) — exp(fg) corresponding to
o(®e), S0 [Up = [le(es) (We Write po instead of ug when no confusion is possible). We then
show the identity

(4) Low = ‘ug2 ..... w+1,..., n o ‘LL:Z:r.l)7
where O is a parenthesized word of length n and O is the parenthesized word obtained
from it by replacing the (i 4+ 1)th letter e by (ee). Applying this identity to O = e(ee) with
i = 1,2 and using the identity uQ" = Ad(®p.o/) o ug relating the various uQ, we obtain (2).
We then study the torsor aspects of the map ® — ug. While M; (k) is a torsor under
the commuting actions of the groups GT; (k) and GRT (k), SolKV (k) is a torsor under the
actions of groups KV (k) and KRV (k). We prove that ® — pg is a morphism of torsors, i.e.,
there exist group morphisms GT, (k) — KV(k), f — a5 and GRT:(k) — KRV (k), g — a,,
compatible with the actions (the Lie algebra version of the latter morphism was already
constructed in [AT]). We give a direct proof of these facts, based on the nonemptiness of
M (k) (a result in |Dr]); we also sketch an independent proof of ay € KV(k); its main
ingredient is the identity

(5) Ad f(z12,T23) © a;z,g o a}’2 = a}’% o a?’g.
A similar independent proof of a, € KRV (k) may be given based on

12,3 0 12 _ 123 23
Adg(tia,taz) 0a,"" 0cay,® = a,* oay”.

It can be proved using the techniques of [AT] that the sets of solutions of both equations are
affine lines, and our result gives explicit formulas for these solutions. We also observe that (5)
can be generalized to the profinite and pro-I setups (i.e., we have morphisms GT — Aut(ﬁg)
and GT; — Aut((Fa),), f — ay, and (5) takes place in Aut(F3) or Aut((Fs);)).

Formula (4) and its analogue (5) then enable us to compute the Jacobians of u$ :
Fp—1(k) — exp(fn—1) and a? € Aut(F,_1(k)), where O is an arbitrary parenthesized word,
® € My(k), f € GT1(k), in terms of in terms of T'y and of the ‘T-function’ of f.

Finally, we show that specializing our construction to the Knizhnik—Zamolodchikov (KZ)
associator yields an explicit solution of the original KV conjecture, where the Lie series are
required to converge for any finite dimensional Lie algebra and the Duflo series is required
to coincide with the generating series of Bernoulli numbers.
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1. PRELIMINARY RESULTS

In this section, we recall the notions of tangential derivations and automorphisms of free
Lie algebras, their divergence and Jacobian cocycles, the actions of pure braid groups (resp.,
infinitesimal braid Lie algebras) on free groups Lie algebras by tangential automorphisms
(resp., derivations), and simplicial morphisms between these objects.

1.1. Tangential automorphisms, the Jacobian cocycle, and complexes. Let f, be
the free Lie algebra with generators z1, ..., zp, fn its degree completion (where the generators
xy, have degree 1). For uy, ..., up € f,, we denote by [uq, ..., u,] the derivation of f,, given by
2k — [ug, xx]- In this way, we define a linear map (f,,)™ — Der(f,,). Its image is a (positively)
graded Lie subalgebra toet,, of Der(f,); its elements are called the tangential derivations of
fn. We similarly define toer) C Der(f,,) as the degree completion of tdet,,; it is a pronilpotent
Lie algebra.

If Uy,...,U, € exp(fn), we similarly define [Uy, ..., U,] as the automorphism of f. given
by xy — UziU, . This defines a map exp(fn)™ — Aut(f,), whose image is the subgroup
of tangential automorphisms TAut,, C Aut(fn). The exponential sets up an isomorphism
exp : toer) — TAut,.

Define T, := A,,/[An, A,] as the quotient of the free associative algebra A, ~ U(f,) by
its subspace of commutators; this is the vector space spanned by the set of cyclic words in
X1y ey L. Ty 18 equipped with an action of Der(f, ), induced by the action of Der(f,) on A,,.
We denote by « — (z) the canonical projection map A, — %,,. T, is positively graded and
we denote by %, its degree completion; it is equipped with actions of Der(f,) and Aut(f,).

One shows that any u € tder, can be written as u = [uq, ..., u,], where (uy,...,u,) is
uniquely determined by the condition p;(u1) = ... = pn(u,) = 0, where py : f, — k is the
linear map such that u = ), pr(u)zr modulo [f,, f,].

We define simplicial group morphisms TAut, — TAut,, as follows. Let' ¢ : [m] D
D, — [n] be a partially defined map, and let (as,...,an) € (f,)" be such that each ay
has vanishing linear term in z. We set [a1, ..., a,]? = [b1, ..., bim], where by(x1, ..., Tp) =
a¢(g)(zk€¢,1(1) Thyoees Zk€¢,1(n) xr). This formula defines a Lie algebra morphism toer,, —
toet,,,, which induces a group morphism TAut,, — TAut,,, also denoted = — x¢. We will also
use the notation z¢ = z® (V¢ '(W) For example, [a1, as]'?? = [ai(z1 + 72, 23), a1 (21 +
.IQ,ZEg),CLQ(Il —|—I2,I3)]]. B

We also define noncommutative variants of these morphisms as follows. Let ¢ be a pair
consisting of a partially defined map ¢ : [m] D Dy — [n] as above and of total orders on each
of the sets ¢~ (1), ..., ' (n). We define [ay,...,an]® := [b1, ..., bm], Where by(x1, ..., zm) =
age) (cbh(zk|k € ¢71(1)),...,cbh(zx|k € ¢~ (n))); here cbh(as,...,ap) = log(e® ...e%) and
cbh(as|s € 9) is defined similarly, for S a finite ordered set. We use the notation z¢ =

2?7 (D871 (where the elements of ¢~ (k) are written in increasing order).
We then define a ‘divergence’ map

7 toer, - T,

as follows. Let Oy : A, — A, be the linear maps defined by the identity x = e(x)1 +
>or; zk0k(z) (where € : A, — k is the counit map). We then set

jw) o= andi(ur)).
k=1

Lwe set [n] := {1, ...,n}.
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One can show that j satisfies the cocycle identity

J([u,v]) = w-j(v) —v-j(u),
where the action of tder,, on ¥, is understood in the r.h.s.; j is graded, so it extends to a
cocycle toer), — ¥,,. The Lie algebra cocycle j gives rise to the ‘Jacobian’ group cocycle

J : TAut,, — @n

J is uniquely defined by the conditions J(id) = 0 and (d/dt).J(e"*g) =0 = j(z) + = - J(g); as
a consequence, J satisfies the cocycle identity J(hog) = J(h) + h- J(g).

The compatibility of j, J with simplicial maps can be described as follows. Any partially
defined [m] D Dy 2 [n] gives rise to a Lie algebra morphism f, — fn, ' — 2, with
3:2 = Zéedrl(k) x¢, and any gz~5 gives rise to a morphism fn — fm, z — z%, with xi =
cbh(z|¢ € ¢7'(K)). These morphisms give rise to linear maps ¥, — %, and T — T
Then one can show that j(u?) = j(u)?, J(g?) = J(9)?, j(u?) = j(w)?, J(g%) = J(g)?.

We define a complex T; > Ty > T5... by f(z1) = flrr4ae)— flz)— flz) = f22—f1—
f2, f(xr,w2) = flaitme, a3)— f(a1, watas)— f (w2, 23)+ f (21, 22) = f125— f125— f234 f1.2)
etc. It is proved in [AT] that this complex is acyclic in degree 2 (the degree of T; is i). The
kernel of T LR %o is 1-dimensional, spa}nned Igy the class of 1 € A7 ~%;.

We similarly define a complex T 5%, 0 Ts... by f(x1) — f(log(e®e®?)) — f(zy) —
flwa) = f12 = f1 = f%, fz1,22) — f(log(e™ e™),23) — f(x1,log(e™e™)) — f(w2,x3) +
f(x1,x2). It has a decreasing filtration by the degree, and its associated graded is the above
complex, so the complex T, O s again acyclic in degree 2. Since log(e®e®2) —x1 —x9 is a
sum of brackets, Ker(%; KA %,) is again 1-dimensional, spanned by the class of 1 € A} ~ %;.

1.2. Braid groups and Lie algebras of infinitesimal braids. Let B,, be the braid group
of order n. B,, may be viewed as m1(X,,/Sn, Snp), where X,, = {(z1,...,2n) € C"|2; # 2z
if i # j} and S,p is the S,-orbit of the set p = {(21,...,2n)|2i € R,21 < ... < 2z,}. The
fibration X,, — X,,/S, gives rise to the morphism B,, — S,,, and the pure braid group PB,
is defined as Ker(B,, — S,), so we have an exact sequence 1 — PB,, — B,, — S,, — 1; also
PB, = 7"'I(AXnap)'

We recall the Artin presentation of B,,: generators are o1, ..., 0,_1, and relations are given
by

00410 = 0i;4+10i04+41 (Z: 1,...,TL—2), 005 = 0504 for |Z—j| > 1.

We also recall the Coxeter presentation of S,,: generators are 1, ...,S$,—1 (s; is the permu-
tation (i, 4+ 1)) and relations are the same as those between the o;, with the additional
relations s =1 (i = 1,...,n — 1). The morphism B,, — S, is then given by o; — s;.

The group PB,, admits the following presentation. For i < j (i,j € [n]), set

Tij = (O'j_g...Ui)_lo'?—fl(Uj_z...O'i).
The generators z;; belong to PB,,, and?
(:Eijftikftjk,xij) = (fEiinkIjk;Iik) = (Iijfbikfpjbxjk) =1 for i < 7 < k,
and
(@ij, xwt) = (Tar, Tjx) = (Iik,xjkle:z;kl) =lfori<j<k<l

One proves that this constitutes a presentation of PB,,, see Figure 1.

For any sequence (ki,...,k,) of integers > 0, there exists a unique morphism PB,, —

PByg, 4. 4k, consisting in replacing the first strand by k; consecutive strands, ..., the nth
strand by k, consecutive strands. If we set m = k1 + ...+ k, and ¢ : [m] — [n] is

2We set (g, h) := ghg—1h~1.
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the map such that ¢(k1 + ... + ki—1 + [ki]) = ¢, we denote this morphism by z +— ? =

glkokit Akt lom - This morphism in explicitly given by

/ N
zy— [T C I @)

ired1(i) j'e€d~1(4)

where H/ , H\ mean the product in increasing and decreasing order of the indices.

X e RN =

=
L1 R

2 X =l | =

2‘ >\ ‘ U | Xe === == X
§ uv = L[ T ] N | |

< == ]
oof | D - NRA B s =P Xa
Generators of B_4 Product in B_n is from top to bottom Generators of PB_4

FIGure 1.

The Lie algebra t,, of infinitesimal braids is presented by generators t;;, i # j € [n] and
relations t;; = t;;, [tij, tix + tj1] = 0 for 4, j, k distinct and [t;;,tx] = O for 4, j, k, I distinct.
For each partially defined map [m] D Dgy A [n], there is a unique Lie algebra morphism
t, — tm, x — 2% given by tfj =D iep-1(i),jrep-1(j) Livjr (In particular, we have an action

of S, on t,). We often write 2" (15871 (") ingtead of #®. We attribute degree 1 to each
of the generators ¢;;, so the Lie algebra t,, is positively graded; we denote by t,, its degree
completion.

1.3. The morphism t,4; — tder,. Let us reindex t;;, i # j € {0,...,n} the generators
of t,11. One checks that there is a unique morphism ad : t,41 — toet,, defined by tg; —
(xj — [z, x;5]) and ti; — (2 — [z, 5], 25 — [zj, 2], 26 — 0 for k # 4,7) if 4,5 # 0. It
exponentiates to Ad : exp(t,+1) — TAut,. One checks that j(adt;;) = 0, so the cocycle
property implies j(adz) = J(Ad X) = 0 for any 2 € t,,1 and X € exp(t,41).

The morphism ad : t,41 — tder,, may be interpreted as follows. The Lie subalgebra of
tn+1 generated by the elements to;, ¢ € [n] identifies with f,, under z; — to;; it is a Lie ideal
of t,41. Then ad : t,+1 — Der(f,) can be viewed as the adjoint action of t,41 on its Lie
ideal fn C tht1-

Note that the morphism t, — t,41, t;; — t;; is injective, so t, may be viewed as a Lie
subalgebra of t,41; then t,; identifies with the semidirect product f, Xaq t,-

1.4. The morphism PB,;; — TAut,. Reindex the generators of PB,;; as x;;, ¢ < j €
{0,...,n}. Let F,, be the free group with generators X; (i € [n]). Then: (a) the morphism
F, — PB,t1, X; — =0, is injective; (b) F,, is a normal subgroup in PB,, ;1. This implies
that we have an action Ad : PB,,41 — Aut(F,) of PB,, by automorphisms of F,,.

This action can be made explicit as follows: if ¢ > 0, then

Ad(z0:)(X;) = Xi X; X1,
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and if 0 < 7 < 7, then

Ad(ei)(Xi) = X1 X X5, Ad(ey)(X5) = (X X)X (XGX),

Ad(zi)(Xg) =X for k<i or k>j,

Ad(ij)(Xk) = (X XXX Xp (XXM XGX) ™ for i<k <.
This extends to an action of PB,, 1 by automorphisms of F,,(k). Using the isomorphism
F.(k) ~ exp(f,) given by X; — e", we therefore obtain a morphism PB,, — Aut(f,). Its
image is contained in TAut,, (since Adz;; belongs to this subgroup and the elements z;; gen-
erate PB,,), and since TAut,, is prounipotent, the universal property of Malcev completions
implies that Ad extends to a morphism Ad : PB, (k) — TAut,,.

Lemma 1.1. For any g € PB,4+1(k), J(Adg) =0.

Proof. It suffices to show that J(Adx;;) = 0. For any u € F,(k), J(Innu) = 0 (where
Innw is v — wou~!) and Ad(zg;) = Inn(X;), so it suffices to prove that J(Inn X; 0 Adz;;) =
0 for 0 < i < j. Let 0;; := InnX; o Adw;j, then 6;; : X; — X;, X; — X;lXin,
Xip = XX X5 for k <ior k> j, X — (XX, X)X (X, ' X;X5) 7! for i < k < .

Let u C toer) be the subspace of all elements [a1, ..., an], where a; € kx;, a; = 0, and for
k#i,7, ar € fn has the form ay(z;,z;) (ar € fg) This is a Lie subalgebra in tdet, so exp
maps it bijectively to a subgroup of TAut,. One checks that exp(u) C U, where U C TAut,
is the subspace of all [Uy, ..., U,], where U; € {e**, X\ € k}, U; = 1, and for k # 4,7, Uy, has
the form Uy (2, ;) (Ux € exp(f2)), and that U is an algebraic subgroup of TAut,,. Therefore
u C Lie(U). On the other hand, one checks that u coincides with the tangent subspace of U
at the origin, so u = Lie(U). It follows that log takes U to u.

All this implies that log#;; has the form [ai,...,a,], where a; = 0, a; = —x; and for
k # 1,7, ax € f, has the form ay(x;,2;). Then j(logf;;) = 0, hence J(6;;) = 0, as wanted.
(]

Note that the quotient group PB,, 41 / F,, identifies with PB,, under z;; — z;; for 0 < i <
7, ©o; — 1. We then have an exact sequence 1 — F,, — PB,,4; — PB,, — 1. Moreover,
this exact sequence admits the splitting PB,, — PB,41, z;; — ;5. It follows that PB,4,
identifies with the semidirect product F,, xaq PB,,.
Remark 1.2. We will rename x,y (resp., z,y,2, X, Y, X,Y, Z) the generators x1, z2 (resp.,
r1,T2,T3, X,Y, X,KZ) Of fg (resp., fg, FQ, Fg)

2. THE MAIN RESULTS

2.1. The map M; (k) — SolKV(k). Let f» be the topologically free Lie algebra generated
by z,y. Let Fy be the free group with generators X,Y and let Fa(k) be its prounipotent
completion; we have an identification Fa(k) ~ exp(f2), induced by the morphism Fy —
exp(f2) given by X — e* Y +— eV.
The set of solutions of the Kashiwara—Vergne equations is (see [KV, AT])
SOIKV (k) i={s € Tso(Fa(k), exp(f2)) [1(X) ~ ¢%, u(Y) ~ ¥, u(XY) = €7+,
and 3r € wk[[u]]|J (1) = (r(z +y) —r(z) —r(y))}-

Here p gives rise to an element of TAuty (using Fo(k) ~ exp(f2)) and J(y) is its Jacobian.
As the kernel of T; — T is equal to ku, r is uniquely determined by p € SolKV(k), so we

345

3For g, h in a prounipotent group G or its Lie algebra, we use the notation g ~ h for ‘g is conjugated to
h’,i.e., g = khk~1 for some k € G.

“f I is a finitely generated group, we denote by I'(k) its prounipotent (of Malcev) completion. There
is a group morphism I' — I'(k) with the universal property that any group morphism I' — U, with U
prounipotent, extends uniquely to a morphism I'(k) — U of algebraic groups.

5The definition given here is equivalent to that of [AT] as 1 — T2 — T3 is acyclic.
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define a map Duf : SolKV (k) — u?k][[u]], p +— r = Duf(u); we will call r the Duflo formal
series of u.

The set of associators with coupling constant 1 is
Ml(k) - {@(t127t23) c exp({3)|¢3,2,1 — (1)71,et23/2(1)1,2,3et12/2@3,1,261531/2@2,3,1 — e(t12+t23+t31)/2,
PLIAPL2BAPL23 _ pl.234p12.3.4)

Theorem 2.1. There is a unique map My (k) — SolKV(k), ® — g, such that®
pa(X) = Oz, —2 — y)e"®(z, —x — y) ", pa (V) = e @28 (y, —x — y) - ¥ - (same) L.

The Jacobian of pg can be computed as follows. In [DT, E] (see also [Ih]), it was proved’
that for any ®(a,b) € My (k), there exists a formal series I'g (u) = eXnz2(D"Ca(mu"/n gyepy
that

o Tao(@+b)
(6) (1+ b9y (a,b))* = T @)

where 9,®(a,b) is defined as above and z — 2% is the abelianization morphism k({a,b)) —
k[a, b]]

The values of the (s(n) for n even are independent of ®, given by —1 (=45 — 1+ %) =
don>1 Ca(2n)u?™, so they are related to Bernoulli numbers by (g(2n) = —%% forn >1
(we have (g(2) = —1/24, (5(4) = 1/1440, etc.)

Proposition 2.2, J(ue) = (logTe(x) +logTs(y) —logTe(x+y)), so Duf(ue) = —logTy.
2.2. Torsor aspects. We set
KV(k) := {a € Aut(Fa(k))|a(X) ~ X,a(Y) ~ Y, a(XY) = XY,
and Jo € uw’k([u]]|J(e) = (o(log(e"e”)) — o(x) = o(y))}
and
KRV (k) := {a € Aut(fy)|a(z) ~ z,a(y) ~ y,a(z +y) =z + v,
and 3s € u’k([u]]|J (a) = (s(z +y) — s(z) = s(y))}.

Here a,a give rise to elements of TAut, (using F2(k) ~ exp(f2)) and J(a),J(a) are their
Jacobians. As before, we will denote Duf : KV (k) — u?k[[u]], KRV (k) — u?k[[u]] the maps

a—0o,a s,

Proposition 2.3. KV(k) and KRV (k) are groups. SolKV(k) is a torsor under the com-
muting left action of KV(k) and right action of KRV(k) given by (a,pu) — poa™! and
(1,a) = a™ op.

6If @ is a prounipotent group, we use the notation g - h - (same)~! for ghg—! for if g € G and h € G or
Lie(Q).

"The key ingredient in the proof of this result is the statement that the image of grt; in f}/f} is spanned
by the classes of the Drinfeld generators. This statement also follows from Theorem 4.1 in [AT]; indeed, one
sees easily that the diagram

o vtadar) o ¢ K[, b]
T T
A = /74 = abk|[a, b]
T T

grty - grty /get]

commutes (the upper part follows from the fact that f, is freely generated by the (ad a)*(ad b)!([a, b]) and
the bottom part from grt] C f5); Theorem 4.1 in [AT] implies that the image of gtt; — T2 is spanned by
the images of the Drinfeld generators; it follows that the same is true of the image of gtt; — 5 /15
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In particular, any element of SolKV(k) gives rise to an isomorphism £v — frv between
the Lie algebras of these groups, whose associated graded is the canonical identification
gr(kv) ~ tro.

The prounipotent radical of the Grothendieck-Teichmiiller group is
GTi(k) = {/(X,Y) € Fo(K)[f(Y,X) = f(X, V)", FXY) (YT XL X)f(Y, Y TIX ) =1,
J (23, 234) [ (212213, 24234) [ (T12, T23) = f(T12, T23224) [ (T13223, T34) }

(the last equation is in PB4 (k)) with product (fi*f2)(X,Y) = f1(f2(X, V)X f2(X, V) L Y) f2(X,Y).
Its graded version is
GRT1(k) = {g(t12, t23) € exp(ts)|g>*" = g7, g(A, C)Ag(A, C) "' +9(B,C)Bg(B,C)'+C =0
for A+ B4 C =0,gh23ghl2g230 — 1 23412340123 _ 112341234
with product (g1 * g2)(a,b) = g1(g2(a, b)agz(a,b) =1, b)ga(a,b) (we set a := t12,b := ta3).
Proposition 2.4. (see [Dr]) M1(k) is a torsor under the commuting left action of GT1(k)
and right action of GRT1(k) by (f, ®) — (f*®)(a,b) := f(®(a,b)e?®(a,b)" !, e’)®(a,b) and
(®,9) = (®*g)(a,b) := ®(g(a, bag(a,b) ', b)g(a,b).

The following Theorem 2.5 and Proposition 2.6 express torsor properties of the map
D — ug.

Theorem 2.5. There are unique group morphisms GT1(k) — KV(k), f(X,Y) — oe?l,
where
ap(X) = (XY TXTHXFXYTIX ) ha (V) = f(LYTIXTHY FY,YIXTH T
and GRT, (k) — KRV (k), g(a,b) — a, "', where
ag(z) = g(z, 2 — y)rg(z, —w —y) ™", ag(y) = 9(y, —z — y)yg(y, —z —y) .

These group morphisms are compatible with the map M1(k) — SolKV(k), which is therefore
a morphism of torsors.

Proposition 2.6. We have a commuting diagram of torsors

M (k) P2 GOlKV (k)
d—logTa | | Duf
u? u? (=1)x—
{r € v?k[[u]]|res (u) = —57 + it < u?k[[u]]

where T, (w) is the even part of r(u), and the spaces in the lower line are viewed as affine
spaces.

2.3. Analytic aspects. Let us recall the original form of the KV conjecture. Let k = R or
C.

Conjecture 2.7. ([KV]) For any finite dimensional k-Lie algebra g, there exists a pair of
Lie series A(z,y), B(x,y) € f2, such that:

(KV1) x +y—logeve® = (1 — e %) (A(z,y)) + (¥ — 1)(B(x,y));

(KV2) A, B give convergent power series at the neighborhood of (0,0) € g2;

(KV3) trg((ad )0, A+ (ad )3, B) = & trg (342 + 2 _sd= 1) Gidentity of an-
alytic functions on g* near the origin), where z = loge®e¥ and for (z,y) € g2, (0, A4)(x,y) €
End(g) is a = £, Az +ta,y), (9,B)(.y)(a) = % ,_,Bla,y+ ta).

According to [AT], there is a unique map x : TAuty — tderz, where x(g) := £ —glg~—!, and
¢ € Der(fz) is the ‘grading’ derivation ¢(z;) = x;. It is proved in [AT] that if x4 € SolKV(k),
and (A, B) are such that —r(u~') = [4, B], then (KV1) and (KV3) hold as identities

between formal series for any g, where in (KV3) the formal series 1 -t~ is replaced by 7, (t).
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Let ®kz(a,b) € exp(f2) be the KZ associator, and ®xz(a,b) := ®rz(s%, 52 ); recall
that ®kz is the renormalized holonomy from 0 to 1 of G'(t) = 5=(2 + 25)G(t), and
&)KZ € Ml((C) Set, HKZ ‘= g, and ugy = [[AKZ7BKZ]] = —Ii(,u;(%).

Let (Ag, Br) be defined as the real parts of (Akz, Bkz) (w.r.t. the natural real structure
of fg) Then:

Theorem 2.8. 1) (Ag, Br) satisfies (KV1), (KV2) and (KV3) for any finite dimensional
Lie algebra g and is therefore a universal solution of the KV conjecture.

2) For any s € R, (As, Bs) := (Ar + s(log(e®e¥) — x), Br + s(log(e*e¥) —y)) is a universal
solution of the KV conjecture.

3) When s = —1/4, we have (As(x,y), Bs(z,y)) = (Bs(—y, —x), As(—y, —x)).

Of course, the main new result here is the analyticity statement (KV2).

2.4. Organization of the proofs. We construct the isomorphisms ﬂg and ug in Section
3. In Section 4, we prove the identity relating puo and ppey. We then prove Theorem 2.1
and Proposition 2.2 in Section 5. In Section 6, we prove Proposition 2.3, Theorem 2.5 and
Proposition 2.6. Section 7 is devoted to a direct proof of the properties of ay. In Section 8,
we compute the Jacobians of ug and a? and in Section 9, we prove the analytic Theorem
2.8. Appendix A is devoted to results on centralizers in t,, and PB,, (k).

3. ASSOCIATORS AND ISOMORPHISMS OF FREE GROUPS

3.1. The categories PaB,PaCD. In [B|, Bar-Natan introduced the category PaB of
parenthesized braids. Its set of objects is the set of pairs O = (n, P), where n in an in-
teger > 0 and P is a parenthesization of the word e...e (n letters); alternatively, P is a
planar binary tree with n leaves (we will set |O] = n). The object with n = 0 is denoted 1.
The morphisms are defined by PaB(0,0’) = 0 if |O| # |0’|, and = B,, if |O| = |0’| = n;
the composition is then defined using the product in B,.

PaB is a braided monoidal category (see e.g. [CE]), where the tensor product of objects is
(n,P)®(n', P') := (n+n', P+ P’) (where Px P’ is the concatenation of parenthesized words,
e.g. for P = ee and P’ = (ee)es, P x P’ = (ee)((ee)e)). The tensor product of morphisms
PaB(01,0) x PaB(02,0)}) — PaB(0; ® 03,0} ® O}) is induced by the juxtaposition
of braids Bo,| X Bjo,| = Bjo,|+]0,| (the group morphism (o;,¢e) — i, (e,05) — 0j10,])-
The braiding So,0- € PaB(0O @ O',0’ ® O) is the braid o, ,, € B4, where the n first
strands are globally exchanged with the n’ last strands (see Figure 2); we have oy, ,/ =
(on-.01)(Ont1---02)...(Ontn'—1...0n/) (where n = |O], n’ = |O’|). Finally, the associativity
constraint ap,or,0v € PaB((O® 0") ® O”,0 @ (O’ ® O")) corresponds to the trivial braid
¢ € Bioj+(or|+/07-

o, -
AN

1

O3

e e
Oy

W | |

FIGURE 2.
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Moreover, the pair (PaB, e) is universal for pairs (C, M) of a braided monoidal category
and an object, i.e., for each such pair, there exists a unique tensor functor PaB — C taking
o to M.

Bar-Natan introduced another category PaCD, which we will describe as follows. Its set
of objects is the same as that of PaB, and PaB(0,0’) = ) if |O| # |0, = exp(t,) x S, if
|O] = |O'| = n. We define the tensor product as above at the level of objects, and by the
juxtaposition map (expt, x Sy,) x (expt, x S,) — exp tyin ¥ Spin (the group morphism
induced by ((ti;,1),1) = tij, ((1,5:),1) = si, (1, (tij, 1)) = tngimgs (1,(1,80) = sngi) at
the level of morphisms.

Any @ € M;(k) gives rise to a structure of braided monoidal category on PaCD (and
therefore to a tensor functor PaB — PaCD, which is the identity at the level of objects)

n4n’

as follows: 8o o = ezyzlzjznﬂt”msn,n/, where n = |O|,n' = |0'|, and sy € Spins
is given by s,/ (1) = n' 4+ i for i € [n], sppw(n+i) =i for i € [n], and ao,0,0n =

(I)(t127t23)1---"7"+1--~"+n/,n+n/+1~~~"+n'+n’/ for n — |O|, n/ _ |O/|, n/, _ |OH|_

3.2. Morphisms B,, — exp(t,) x S,, PB, — exp(t,). Fix ® € M;(k). It gives rise to a
functor Fp : PaB — PaCD, so for any n > 1 and any O € Ob(PaB), |O| = n, we get a
group morphism

Fg(0) = jio : B,, ~ PaB(0O) — PaCD(0O) = exp(t,) x Sy,

B, kg exp(in) X Sy,
such that \ commutes. It follows that fio restricts to a morphism

Sn
fio : PB,, — exp(ty,).

Let us show that the various fip are are all conjugated to each other. Let canp o €
PaB(0, ') correspond to e € B,,. Then canp/ o~ ocanp,or = canp.o». Moreover, if we
denote by oo : B,, — PaB(O) the canonical identification, then oo (b) = canp, o coo(b) o
cana}o,. Let us set ®p 0’ 1= F@(Canoﬁo/). Then:

1) 0.0/ € exp(tyn), ®or,0nPo,0 = Po,07;

2) jior (b) = ®o,0rfio ()@ 5l -

If O = o(...(ee)) is the ‘right parenthesization’, the explicit formula for fip is

fio(0;) = BUTLiHZm et /2 (iithit2omy=1 G _ g 1,

The morphisms jip extend to isomorphisms between prounipotent completions as follows.
The prounipotent completion of B,, relative to B,, — S,, will be denoted B,,(k, Sy,); it may be
constructed as follows: B,, acts by automorphisms of PB,,, hence of PB,,(k); B, (k, S,) fits
in an exact sequence 1 — PB,, (k) — B, (k,S,) — S, — 1 and identifies with the quotient
of the semidirect product PB,, (k) x B,, by the image of the morphism PB,, — PB,, (k) x B,
g+ (971, g) (which is a normal subgroup). Then the morphisms jio give rise to isomorphisms

PB,(k) =  exp(tn)
i i
B.(k,S,) = exp(fn) X Sy,

When @ is the KZ associator (with coupling constant 27 i), these isomorphisms are given
by Sullivan’s theory of minimal models applied to the configuration space of n points in
the complex plane (which computes all the rational homotopy groups of a simply-connected
Kaehler manifold, but only the Malcev completion of its fundamental group in the non-
simply-connected case, whence the name ‘1-formality’).



12 A. ALEKSEEV, B. ENRIQUEZ, AND C. TOROSSIAN

3.3. Restriction to free groups. Renumber z;;, ¢ < j € {0,...,n} and t;;, i # j €
{0, ...,n} the generators for PB,,+1 and t,y1. Recall that PB,,+1 contains the free group
with n generators F,, = (z¢1,...,%0,»n) as a normal subgroup. Similarly, t,11 contains the
free Lie algebra with n generators f,, = Lie(to1, ..., to,n). For coherence of notation with the
previous sections, we will set X; := xq;, x; := to;.

Proposition 3.1. For any O € Ob(PaB) with |O| = n+ 1, the morphism fio restricts to a
morphism po : Fr, — exp(§,), which extends to an isomorphism o : Fn(K) — exp(fn). The
composition of o with the isomorphism exp(fn) — Fn(K), exp(a;) — X;, is a tangential
automorphism of exp(fy), i.e., an element of TAut,,.

Proof. Let us first treat the case of [in i= flo(...(e0))- As Toi = (0i_9...00) " to? ((0i_2...00),
we have i, (70;) = pin(0i_g...00) L@ LbiHLn olicra (Qi-Libitl.my=1, (5. o 5q). There

exists y; € t,41 such that tn(0i—2...00) = eYis;_...80, s0 for some §; € t, 11,

((I)iil’i’ilemn)il‘un(0'1'72...0'0) = Si,Q...Soegi.

Then g, (20;) = € ¥ (si_2...50) teli-1isg;_o...50e¥ = e Yieloie¥i, As the action of t,.1 on f,

is by tangential automorphisms, we have e Yietoieli = e%ieloie~% for some z; € fn So p, 0
(€' +— z0;) € TAut,,. The general case follows from the identity po(b) = @0 .0 po (b)fba}o/
and the fact that for any ¥ € exp(t,41),  — Yz¥ ! induces a tangential automorphism of
exp(fn). O

Proposition 3.2. If moreover O = e ® O, where O € Ob(PaB) has length n, then
po(X1..X,) = e®1tFon,

Proof. The map PBs — PB,, 11, p — po’lf" takes zg1 to xo1...20n = X1...X,,. Similarly
to (9), one proves that the diagram

— 0,1...n
PB, "o PB4
ﬂo. l l«ﬂ.@é
. JRRIONUS PO R
exp(tz) - exp(tn41)
commutes. O

The various isomorphisms po are related by the identities
(7) por = Ad(®o,07) © po;

the automorphisms Ad(®o,0o/) are no longer necessarily inner.

4. THE IDENTITY pom = g """ o ;L:(Zj.l)

Let O € Ob(PaB) be a parenthesized word of length n; its letters are numbered 0, ..., n—1.
Let i € {1,...,n — 1}, let O be the object obtained by replacing the letter ® numbered i by
(e0) (e.g., if O = o(ee), then O') = o((ee)e)). The purpose of this section is to show the
identity

1,2,di L, it
How = Ho O'u’o(oo)'

4.1. Free magmas and semigroups. Recall that a magma is a triple (M, M xM — M, e €
M) satisfying e x m — m and m X e — m. A semigroup is a magma, where M x M — M
is associative.

Let X be a finite set. Let Mgy be the free magma generated by X and Sgy the semigroup
generated by X .The assignments X — Sgy, X +— Mgy are functorial and we have a natural



DRINFELD ASSOCIATORS AND SOLUTIONS OF THE KASHIWARA-VERGNE EQUATIONS 13

map Mgx — Sgx; so we have a commutative diagram

Mgy — Sgx

l !
Mgy = Sep =N

This diagram is Cartesian, so Mgy can be identified with a fibered product. Explicitly,
we have Sgy = U,>0X", Mg,y = Un>o{parenthesizations of the word e...e of length n} =
Un>o{rooted planar binary trees with n leaves}, Mgy = U,>o{parenthesized words of length
n in the alphabet X}.

We denote by w: Mgy — Sgx (word), P : Mgy — Mgy,; (parenthesization) the natural
maps; the various maps to N are denoted by x +— |z| (length).

Note that S,, acts on X™. For w,w’ € Sgx, with |w| = |w'| = n, we then set Sy =
{0 € Splo-w=w}.

4.2. A braided momnoidal category PaBx. We denote by BMC the ‘category’ of braided
monoidal categories (b.m.c.), where morphisms are the tensor functors.

We define a functor Sets — BMC, X — PaBx, adjoint to the ‘objects’ functor BMC —
Sets, C +— Ob(C. This means that for any set X and b.m.c. C, we have a natural bijec-
tion Morgets(X,ObC) ~ Morgmc(PaBx,C). More precisely, we have an injection X C
ObPaBx, and for any b.m.c. C and any map X — Ob(C, there is attached a tensor functor
PaBx — C, such that ObPaBx — Ob( extends X — ObC. When X = {e}, PaByx
identifies with Bar-Natan’s PaB.

We now construct PaBx. We set Ob(PaBx) := Mgy. For 0,0’ € Mgy, we set
Pan(0,0/) =0 if |O| 75 |O/|, and = B, Xﬂ-Sw(O))w(O/) if |O| = |O/| =n (7T :B, — S, is
the canonical projection). So PaBx(0,0’) C By; since Sy Sw w C Sw,w, the product
in B,, restricts to a map PaBx(0,0’) x PaBx(0O’,0") — PaBx (0O, 0"), which we define
as the composition in PaB x.

The tensor product is defined at the level of objects by the product in Mgy, and at the
level of morphisms is induced by the juxtaposition map B,, x B;, — Bytm.

We now construct the braiding and associativity constraints. For O,0',0" € Myx,
ao,0r,0n € PaBx((O® 0') ® 0",0 ® (O’ ® O")) is defined as the identity element in
Butnr s (n=|0], 0’ = [O/], 0" = |O"]).

Then Bo,0r € PaBx(0O ® 0',0" ® O) ~ B|o|4|0| corresponds to oy, (one checks that
the image sp.pn/ € Spiyns Of 0y s belongs to the desired Sy, ).

One checks that PaBx, equipped with this structure, is a b.m.c., and that X — PaBx
is adjoint to the ‘objects’ functor.

4.3. The category PaCD x. We first define a tensor category Fx as follows. Ob(Fx) :=
Sgy, and for w,w' € Sgy, Fx(w,w') = 0 if |w| # |w'|, and = (exp(tn) ¥ Sp) Xz Sw.wr else,
where 7 : exp(t,) x S, — S, is the canonical projection. The composition is defined as
above, using the product in exp(in) X Sy, again using Sy wSw w’ C Sw,w -

The tensor product is defined, at the level of objects, by the semigroup law, and at the level
of morphisms using the juxtaposition (exp(t,) x Sy) x (exp(tn) X Sp/) — exp(tnin’) X Spins.

Let ® € My(k). For X = {e}, Sgyx = N (we then have n®@m = n+m). For n,n/,n” € N,
we then set

P PL-montlontn’ ndn/+ 1 ntn'+n" o exp(tpynignr) € Froy(n® n ®n'");
Snon' € Spins is the block permutation ¢ — n' +1i (i € [n]), n+i i (i € [n']) and
Bt = (et”/z)1"'"’"+1"'"+"/sn7n/ € exp(tnin') X Spin = Fey(n@n',n' @ n).

We note that if X is arbitrary and w,w’,w"” € Sgy, then ajy| jw, v € Fx(w @ w @ w")
and ﬂ|w|7|w/‘ € Fx(w Quw,w ® ’LU)
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We define the category PaCDx by Ob(PaCDx) := Mgy, and for O,0’ € Mgy, we
set PaCDx(0,0") := Fx(w(O),w(0")). The tensor product is defined at the level of
objects as the product in Mg,; as w : Mg, — Sg, is compatible with products, a tensor
product is defined at the level of morphisms by PaCDx(01,02) ® PaCDx(07,0)) =
Fx (w(01),w(02))@Fx (w(07), w(03)) — Fx (w(01)®@w(01), w(02)@w(03)) = Fx (w(O1®
0}),w(02 ® 0})) = PaCD x (01 ® 07,02 @ Of).

Let ® € M;(k). Then ® gives rise to a b.m.c. structure on PaCDx by ap,0,07 =
ajol, |00 € Fx(w(0) @ w(0') ® w(0")) = PaCDx((0O® O') ® 0",0 ® (0O’ @ O"))
and Bo,0 = ﬂ|o|7|o/| € Fx(w(0O) @ w(0"),w(0") @ w(0)) = PaCDx (0O ® O',0’ ® O) for
0,0',0" € Mgy.

We denote by PaCD;IZ the resulting b.m.c.

4.4. Tensor functors. When X = X; := {e}, PaBx coincides with PaB; we also denote
Mgy, PaCD% by Mg, PaCD®. For X = X, := {e,0}, we denote PaBx, PaCD%, Mgy,
Sgy by PaBy, PaCDj, Mg,, Sg,.

We define PaBy; — PaB as the tensor functor induced by the map Xo — Mg, e — e,
O +H— ee,

We denote by PaB — PaCD? the tensor functor induced by the canonical injection
X; — Ob(PaCD?) = Mg;.

Similarly, we denote by PaB, — PaCDg the tensor functor induced by the canonical
injection X — Ob(PaCD3) = Mg,.

Let us now construct a functor Fx, — Fx,. At the level of objects, this is the semigroup
morphism Sg, — Sg; induced by the map [ : X9 — Sg; ~ N, w +— @ given by @ — 1 and o —
2. So for w = (w1, ..., w,) € Up>0 X%, =Y., l(w;), where [(¢) =1 and [(ee) = 2. Let us
now define the functor at the level of morphisms, i.e. the maps Fx, (w,w’) — Fx, (w,@’). As
Fx,(w,w") = () unless (card{i|w; = e}, card{i|w; = o}) = (card{i|w} = e}, card{i|w] = o}),
we will assume that these pairs of integers are equal (in particular |w| = |w'|); we denote
this pair by (n1,n2). Note that |w| = |w'| = n1 + ng, while © = @' = nq + 2ns.

There is a unique non-decreasing map ¢, : [n1 + 2ns] — [n1 + ngl, such that ¢ has one
preimage by ¢, if w; = e and two preimages if w; = o; for example, if w = (o, 8,0, 0, @), then
dw i [T — [5]is (1,...,7) — (1,2,3,3,4,4,5).

Moreover, for any o € Sy, tn,, there is a unique o € Sy, y2n, such that: (a) cogp, = ¢yo
0%, where w' = o - w, so that o restricts to bijections ¢ (i) — ¢,/ (i); (b) these bijections
are increasing (this condition is nonempty only if card ¢, (i) > 1). The map o — o’ is a
group morphism Sy, 4n, — Sn,+2n, (it maps a permutation to a block permutation); for
example, if w = (o, , ), this map is S5 — Sy, (323)— (3234), (133)— (1234).

The morphisms t,,1n, — th,12n,, T — 2% and Sni4ns — Sni+2n,, 0 — o are com-
patible, so we obtain a group morphism exp(t,, 1n,) X Snitny — €XP(tn,12ns) X Sny12n, -
We then define Fy, (w,w') — Fx, (w,%@') as the restriction of this group morphism. One
checks that this map is compatible with tensor products, so we have defined a tensor functor
FX2 — F‘X1 .

The tensor functor Fx, — Fy, extends to a tensor functor PaCD3 — PaCD? as follows.
There is a unique magma morphism Mg, — Mg;, O — O, extending the map X» — Mg,
e — e o ee. It is such that the diagram

Mg, — Mg,
! i
Sgo — Sgy

commutes. The functor PaCDg — PaCD? is defined, at the level of objects, as the map
Mg, — Mg, and at the level of morphisms by PaCDJ(0,0’) = Fx,(w(0),w(0’)) —
Fx, (w(0),w(0")) = Fx, (w(0),w(0')) = PaCD(0,0").
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It remains to show that it takes braidings and associativity constraints to their analogues.
Namely:

(a) it takes 0,00 € PaCD2(0 ® O',0" ® O) to 85 5, € PaCD(0O ® 0',0' ® 0).

(b) it takes ap,0,0» € PaCD3((0®0")®@0",0® (0’ ©0")) to ap 5 5 € PaCD((0O®
0/) ® O~//7 0 ® (O~/ ® O//))_

To prove (a), let w,w’ = w(0),w(0"), (card{i|lw; = e}, card{i|lw; = o}) = (n1,na2),
(card{i|w; = e}, card{i|w; = o}) = (n},nj). Then 80,0/ = Bn,tnami4n, € Fx, (W@ W', w' @
’LU) SlmllarlY: 6@76/ = 6n1+2n2,n'1+2n/2 € FX1 ('(D & '@/7 o' ® 'LD)

Now note that:

((tu)1.,.n,n+1..,n+n’)¢w®w/ _ (t12)1..,n1+2n2,n1+2n2+1...n1+2n2+n’1+2n’2
)

and
(Sn,n’)u@w
So the map Fx, (w® w',w' @ w) — Fx, (@ @', 4" @ w) takes By ns t0 B, 12n,,n) +2n;,- The
proof of (b) is similar.
Then the diagram of functors

= Sny+2n2,n)+2nk-

PaB, — PaB

| |
PaCD} — PaCD?®

commutes by universal properties (the two composed functors PaBs — PaCD? coincides
as their restrictions to the elements of Xo C Ob(PaB3) do).

Remark 4.1. More generally, to any map X — Mg,;, one associates a tensor functor
PaCD§ — PaCD?, defined at the level of objects by the extension of this map to a
morphism Mgy — Mg, and at the level of morphisms by suitable iterations of cobrackets,

and it is such that
PaBxy — PaB

| l
PaCDx — PaCD

commutes.

4.5. Relation between braid groups representations. Let n > 1, let i € [n], let w’ =
(o,...,0,0,0, ... 8) € Sg, be given by w; = o and w; = e for j € [n] — {i}. Let O € Mg, be
such that w(O) = w’. We have proved that the diagram

PaB,(0) — PaB(0)
| |
PaCD,(0) — PaCD(O)

cominutes.
We have isomorphisms:
PaB-(0) ~ B,, XS,_1, where S,_1 C S, identifies with {o € S, |0(i) = i};
PaCD;(0) ~ (exp(tn) X Sn) Xx Sn_1;

PaB(O) ~ B,,41;

PaCD(0) ~ exp(tpy1) X Spy1.

For O € Mgy, , |O| = n, the morphism PaB(0O) — PaCD(O) is a morphism o : B,, —
exp(t,) x S,. Note that if Ox € Mgy and O := P(Ox), then we have a commutative
diagram

Pan(Ox) — PaCDx(Ox)
l |
B, =2 exp(tn) % S,

where the vertical maps are injective.
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The above commutative diagram therefore inserts in a diagram

Bn — Bn ><7'rSn71 1>27~-~7iﬁl‘17~~7" BnJrl
(8) prol 1 lﬂo(i)
~ - 1,2,..., it+1,..., 2
exp(ty) ¥ Sp,  «—  (exp(tn) X Sp) Xx Sn—1 = " exp(tp+1) X Snt1

Restricting to pure braid groups, we obtain the commutative diagram

—

PBn PBnJrl
©) rol o l'“o(i)
exp({n) 1’2""’”"'1;1;"2"“’"""1 eXp(EnJrl)

4.6. Relation between uo and ppi). Let O € Ob(PaB), |O| = n. We index letters in O
by 0, ...,n— 1, fix an index 7 # 0 and construct O by doubling inside O the o with index i.
O gives rise to a morphism fip : B, — exp(in) xSy, which restricts to po : Fp_1 —
exp(fn_1). Similarly, i) : Bpy1 — exp(tag1) X Spy1 restricts to oo : Fr — exp(fn)-
We want to prove that
(1) ot = 2 o it
We first show that there are uniquely determined elements g1, ...,gn—1 € exp(fn_l) and
g, h € exp(fz) such that:
(a) po = [91(%1, s Tn-1)s o Gn—1(T1, ey Tn—1)], 10g gi(T1, oy Tn—1) = —%(;m + ..+
zi_1) + O(z?), and®
(b) fe(ee) = [g(w1,22), (21, 72)], log g(w1,z2) = O(2?), log h(z1,12) = —%3:1 + O(z?).
Let us prove the first statement (it actually contains the second statement as a partic-
ular case). The elements g¢;(z1,...,2,—1) are uniquely determined by the equality po =
lg1, -, gn—1], together with the condition that the coefficient of z; in the expansion of log g;
vanishes. We should then prove that log g; = —3(z1 + ... + z;—1) + O(2%). We have

fo(oj) =e% - etj—l,j/QSj LT,
where a; € t,, has valuation > 2 (we write this as a; € O(t?)), and
po(Xi) = fio(o1) " io(0i-1) " io(0i)* io(oi-1)..fio(o1).

Now
2
10(0i1)-fio(01) = §i—1...51€2 @1 HTi=)+OE)

and fip(0?) = e%ieli-tie~% It follows that
/LO(Xi) — e*%(11+»»»+1i—1)+o(t2)6&i . eTi (same)fl,

where @; = $1...8;_1-a;8;_1...51 € O(t?), s0 po(X;) = e~ 3 (@1t Fzio1)+O(t) o, (same)~ 1,
which implies that g; has the announced form.
To prove (10), we need to prove the equality
(11) Mo = IIgl(xh e Ti Li+1, "'7:1;77,)7 "'7gi($17 ey T F Li+1, ...,xn)g(xi,l'i-l,-l),
Gi(Z1, oy T + Tig 1, oy )T, Tig 1), ooy G 1 (T15 ooy i+ Tig1, o, )]
(9) implies that the diagram
anl - Fn
#gi l“o(j)
exp(fn-1) — exp(fn)

8O(m2) means an element of }n,1 of valuation > 2.
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commutes, where the upper morphism takes X; (j € [n—1]) to: X, if j < ¢, X; X1 if j =1,
Xj41 if 7 > ¢+ 1 and the lower morphism is similarly defined (replacing products by sums
and X’s by x’s). Specializing to the generators X; (j # ¢) of F,,_1, this yields

o (X;) = g (same)
for j < i and .

Lo (X;) = g?’l’ L e (same) !
for j > i+ 1, which implies that (11) holds when applied to the generators X, j # 4,1 + 1.

We now prove that (11) also holds when applied to X; and X;4;.
The morphism X; € B,, = PaB(0, O) can be decomposed as

0“7 (0, @ (e0)) ® Os = (01 @ (00)® 0, 77577 0.
Here the braid group elements indicate the morphisms. Let v € exp(t,) x S, be the image
of the morphism O (Fimzig0)™ (O1 ® (ee)) ® O3 under PaB — PaCD; its image in S, is the
permutation sg...s;_2, i.e., (0,...,n—1)— (1 —1,0,1,....4 — 2,4,i+ 1,...,n — 1). The image
of (O1 ® (ee)) ® O3 U?—71 (01 @ (e8)) ® Oy is efi-1.i therefore the image of X; is
po(X;) = yel-riy™h
We have v = v95s¢...8;—2, where vy € exp( n). As So...8i—2 - ti—1,; = ;, we have
1o (Xi) =v0e" vy !
~1

, we derive from this that g, 'y com-
)\xia01,1,2,...,171,1+1 ..... nfl’ where

As this image is also g;(z1, ..., 2n—1) - €¥ - (same)
mutes with z;, hence by Proposition A.1 has the form e
a € exp(th_1).

Since po(o;) = s;jet+1/2 we get logyo = —3(21 + ... + 7;-1) + O(z?). Comparing linear
terms in x;, we get A = 0.

Let us now compute jo (X;). The morphism X; € B,y = PaB(O®,0®) can be
decomposed as

2

00 =227 (0, @ (o(00))) © 02 "5 (04 @ (o(s9))) 2 0, 7

—2...00

oW

Oi—2...0 -1
(here o | involves the two first e of e(ee)). The morphism O® (oi=2200) (O1® (o(w0))) @

(0’172...0’0) 1
—

O, is obtained from O® (01 ® (e0)) ® 02 by the operation of doubling of
n 0,1,2,...,2t+1

the ith strand, so its image is 4012 8itL. =y T "(sp...8;_2). The image of
2

o(o0) 4 o(e0) is g(x1,x2) - €™ - (same)_l

, so the image of

(01 (o(0))) ® 05 "5 (01 ® (s(w0))) © O

is g(ti—1.i,ti—1i+1)el =1 (same) 1. Tt follows that

Lo (X;) = O b2t besng (gt g i)t (same) T = 78’1’2""’iiH""’ng(fEi, Tiy1):
Now we claim that
Yo B g (i ) (same) T = g b T g (g i) - e (same) T
Indeed,
(g7 My0) Ottt g (i) - € - (same) Tt

PN TR ES WS B n71)0,1,2,...,ii+1 ,,,,, n -1

g(xi, xiq1) - €77 - (same)
QOHH12,3, i = 142, -1

g(Ti, xiq1) - €77 - (same)

Now z; and x;;1 commute with any a1 so this is g(x;, xi11) - €% - (same) L.

e”-(same)

—1
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So we get

Lo (X;) = gob2 b (i 1) - e - (same)

The same argument shows that

0,1,2,...,ii+1,...,

pow (Xiv1) = g; !

"h(xs, i) - €7 - (same) T,

as wanted.

5. THE MAP M; (k) — SolKV (k)

We show that for ® € M;(k), e € SolKV(k). By construction of ug, we have pg(X) ~
e®, uo(Y) ~ €Y, so pue € TAuts.

5.1. Proof of Ad ®(t12,ta3) © ,u};’g o U<11.J2 = ,u}}g% o ,uijg. We first prove:
Proposition 5.1. 1) [ie(es) = /1.
2) (I)o((oo)o),o(o(oo)) = (I)(t127t23)'
Proof. Let us prove 1). 291 € By = PaB(e(ee)) corresponds t0 e e.e 0 (37, ®ids)0ag ,-
The image of this element in exp(t3) x S5 is Ho(ee)(X) = ®(tor,t12)e0r ®(to1,t12) 1. Since
to1+t12+to2 is central in t3 and since ® is group-like, this is ®(to1, —to1 —to2)e!® ®(to1, —to1 —
to2) 7! = ®(x, —x —y)e*®(z, —x —y) ! = pe(X). Similarly, T2 corresponds to (ide @[ e) 0
(oee © (B2, ®ids) 0 agy , 0 (ide ®B,1). The image of this element in exp(ts) % S is
,u.(..) (Y)
= 6t12/2(12)(1)(t01, tlg)etmq)(t()l, t12)71(12)€7t12/2 = €t12/2(1)(t02, tlg)etm@(tog, t12)7167t12/2
= e~ (101H102)/2Q (105, —to1 — to2)e'™ D(toa, —to1 — toa) tellorT02)/2
= e 2Py, —x — y)eVD(y, —x — y) L@ TV/2 = g (V).

So He(ee) = Hd-

Let us now prove 2). Let O := o((ee)e), O’ := o(e(oe)). Then canp,o = ide ®de e €
PaB(0, 0'), whose image in PaCD(0, O') = exp(t4) x Sy is ®(t12,t23) = Po.0r. O

We now prove (2). Applying (4) to O = e(ee) and i = 1,2, and using jie(ee) = /15, We get

12,3 1,2 1,23 2.3
‘u'((")') = Uy oOlg ,u.(.(..)) = Hp O g -

Moreover, (7) implies
Ad (I)o((oo)o),o(o(oo)) O He((ee)e) = He(o(oe))-
AS @q((ea)e),0(s(ee)) = P(t12,123), We get (2).
5.2. Proof of uge(XY) = e*TY. We will give three proofs:
First proof. We have

e (XY) = po(X)pa(Y)
= Oz, —x — y)e"®(—z —y,x)e” T 20(y, —x — y)e?D(—x — y,z)e" T/
=®&(z,—x — y)e””/2<1>(y, :v)ey/2<1>(—;v -y, x)e(”y)/? =" 1Y,

where the second equality follows from the duality identity and the third and fourth equalities
both follow from the hexagon identity.
Second proof. Let us set v := u;l. Since pg satisfies (2), we have

(12) 33 o2 = b2 o 123 o Ad(P (19, ta3)).

Let us set C(z,y) = v(z + y), and apply (12) to = + y + z to obtain C(z,C(y,z)) =
C(C(z,y),2). According to [AT], this implies C(z,y) = s~ !log(e*Te®¥) for some s € k*.
Checking degree 1 and 2 terms in v, we get s = 1.
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Third proof. As [ies(z01) = €', and using Proposition 3.2, we get fa06(X1...X,) =

floo (X1...Xp) = (etor)0:ln — et +Zn  This implies uge(XY) = et since pgp = He(ee)-
5.3. Proof that J(us) is a d-coboundary (end of proof of Theorem 2.1). Since
J(Ad ®(t1a,t23)) = 0, and J(us>®) = J(ua) 22, etc., we get by applying J to (2),
O(trz, bas) - I (1a) > + B(t12, tas) 0 g - T (na)? = T (na) > + pg™ - J(pa)>?
Applying the inverse of (2), we get
(1a™) " olng ") ™H T (1) 224 (ug™) T ()2 = (ng”) " olpg™) T () H 4 (ug”) 7T (na)*,

and since a3 - 123 = (q - £)123

(1g™) ™" (gt - T (1)) + (g T(pa )V = (u5”) " (g T (ne) 2 + (" - T (pa))™®.
14123 _ t1”2 3

, etc.,

Now gt (z+y) = log(e“e?) implies that (ug?)~ , and similarly with 1,23, so
S(ugt - J(pua)) = 0. So there exists 7 € ¥, with valuation > 2 such that ug' - J(ua) = 0(7).
Now pg - 7" = 4'%, and po - 7' = 4%, pe -7* = 7% as pa(x) ~ 2, pa(y) ~ y, therefore
pas - 0(y) = 6(7). So J(us) = 6(y). It follows that for a suitable v € u2k[[u]], we have

J(pa) =0(7) = (v(z +y) = v(2) —(y))-
All this ends the construction of the map M; (k) — SolKV(k), hence the proof of Theorem
2.1.

5.4. Computation of J(ug) (proof of Proposition 2.2). Let U := [1, A(z,y)] € TAuts,
where

log A(x,y) = Zak (adz)*(y) + O(y?)
k>1

(here O(y®) means a series of elements with y-degree > 2). Thenlog U = [0, ax(ad )k (y)+
O(y?)], and J(U) = j(logU) + O(y*). Now j(log U) = (Ciz1 axy(=2)" + O(y?)). So
= Z ap(— Y+ O(y )

k>1

On the other hand, the hexagon identity implies that pe = Inn(®(z, —z — y)e */?) o iy,
where jig = [1, ®(x,y)"1], and we then have J(fio) = J(1a).
We have log ®(z,y) = — >~ Co(k + 1)(ad 2)*(y) + O(y?), therefore

J(ne) = J(Hia) = (Y_(=1)"Co(k + 1)z*y) + O().

k>1

As we have J(ug) = (f(z) + f(y) — f(x + y)) for some series f(x), we get

(13)
Tpo) = (-1t 2D

This proves Proposition 2.2.

((z+y)*Ht =T —y*)) = (log Tp(z)+log Ta (y) —log Lo (x+y)).

6. GROUP AND TORSOR ASPECTS

6.1. Group structures of KV(k) and KRV(k). It is proved in [AT] that KRV(k) is a
group, acting freely and transitively on SolKV (k).

Let us prove that KV(k) is a group. For a € KV(k), let o, := Duf(a), so o, € u?k][[u]],
and J(a) = 0(0,). If o,/ € KV(k), we have clearly o/ o a(X) ~ X, o/ oY) ~ Y,
o/ oa(XY) = XY. Moreover, J(a/ oa) = J(&/)+/ - J(a) = §(0a )+ 0" -0(00) = 0(0a+0u),
where the last equality follows from o/ (X) ~ X, o/(Y) ~ Y, o/(XY) = XY, which implies
6(a’ - t) = 0(t) for t € 1. So o/ o € KV (k). One proves similarly that o~ € KV (k). We
have also proved that 04/0a = 0o + 0o, i.e., Duf : KV(k) — u?k[[u]] is a group morphism.
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6.2. The torsor structure of SolKV(k) (proof of Proposition 2.3). Let us prove that
KV (k) acts on SolKV (k). For u € SolKV(k), let r, := Duf(u), so r,, € u?k[[u]], and J(u) =
d(ry). For pn € SolKV (k), v € KV (k), we have proa(X) ~ pu(X) ~ e, poa(Y) ~ pu(Y) ~ €Y,
poa(XY) = pu(XY) = e*¥. Moreover, J(poa) = J(u) +p- J(« ) = (5(?“) +p-0(0n) =
(7, + 0a), where the last equality uses the identity &(t) = p - 6(t) for t € To, which follows
from pu(XY) = eV, u(X) ~ €%, u(Y) ~ €Y. So poa € SolKV (k). We have also proved
that 7,00 = 7, + 04, so Duf : SolKV (k) — u?k[[u]] is a morphism of torsors.

Let us now prove that the action of KV(k) on SolKV(k) is free and transitive. For
w, i € SolKV(k), set o := p~top/; then a(X) ~ X, a(Y) ~ Y, a(XY) = XY, and
Je) = J(p ) +pt - JW) = pt - (W) = J(w) as J(pT') = —p~t - J(u). Then
J(a) = p=t - (6(rpy — 7)) = 0(rw — 1), where the last equality uses p=! - §(t) = §(t) for
te % SoaecKV(k).

6.3. Compatibilities of morphisms with group structures and actions (proof of
Theorem 2 5). We now show that: (a) f — a}l is a group morphism GT; (k) — KV(k),
(b) g — a, ! is a group morphism GRT; (k) — KRV (k), (c) the map ® — ug is compatible
with the actlons of these groups.

For this, we will show that

(14) [ifsd = [l O OLf,  dbng = Ug © i

We will check these identities on the first generator (X or x), the proofs in the second case
being similar.
The proofs go as follows:

M*@(X) (f * ®)(z, —2 —y) - " - (same) ™!
f(®(z, —x —y)e®(z, —x —y) e D(z, —x —y) - e” - (same)
Fpa(X), pa (Y ' X)) - pao(X) - (same) ™!

— e (f(X,Y LX) X - (same) ™) = pg o ay(X)

and

fisg(X) = (P * g)(x, —x —y) - € - (same) "

= ®(g(x, —x — y)zg(x, —z —y) "', —x —y)g(z,—z —y) - €” - (same)
= ®(ag(x), ag(—x —y)) - ag(x) - (same) ™"
= ay(®(z, -z — y)zP(z, —x — y) H = ag o pa(X).

—1

The first part of (14) implies the following: (a) if f € GT1(k), then ay € KV(k); (b)
Qi = p, 00 ; (¢) Mi(k) — SolKV (k) is compatible with the group morphism f — 04;1.

Indeed, using the nonemptinesss of M; (k) (see [Dr]) we get af = g ' opt v, which implies
ay € KV(k) according to Subsection 6.2, i.e., (a). Again using the nonemptiness of M (k),
we get af«f, = :U‘;l O H(frxfa)x® = (:ugl O fLfyd) © ('U’,?gl*@ O:ufl*(fz*q’)) = ay, oay, (where we
used (f1 % f2) * @ = f1 * (fo * ®)), which proves (b). (c¢) is then tautological.

Similarly, the second part of (14) implies: (a) if ¢ € GRT;(k), then ay € KRV(k); (b)
Ggy gy = Gygy © gy ; (¢) My(k) — SolKV (k) is compatible with the group morphism g — a*.
All this proves Theorem 2.5.
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It is easy to prove the identities af.f, = Quf, © Qtfy, Qgyug, = Gg, © Gg, directly (i.e., not
using the nonemptiness of M;(k)): the verifications on the first generators (X and z) are
Qfyx fo (X) = (fl * fQ)(XvY_lX_l) - X (Same)_l
= fi(AXY I X HXA(X,Y ' X ) LYy I X Y AX, Y IX Y - X - (same) !
= filap(X),an,(Y ' X)) - ap, (X) - (same) ™!
=af (fl (X, YﬁlX?l) - X (Same)il) =apoarn (X)7
and
agyxgs (€) = (91 % g2)(z, —2 — y) - 2 - (same) ™!
= g1(g2(z, —2 — y)zge(x, —x — y) ", —2 — Y)ga(z, —x — y) - ¥ - (same)
= g1(ag, (x),ag,(—z —y)) - ag,(x) - (same) ™!

= Qgy (91(7, =2 — y)zg1 (7, —2 — y)_l) = Qg, O Qg ().

-1

Remark 6.1. The Lie algebra morphism corresponding to g — aq’l

get; — Ero from [AT], given by ¢(z,y) — [¢(z, —z — y), ¥(y, —z — y)].

6.4. Torsor properties of the Duflo formal series (proof of Proposition 2.6). We

have already proved that M (k) — SolKV (k), and SolKV (k) 2%

torsors. On the other hand, it follows from [E] that M; (k) FlogTe {r € v k|[[u]]|res (u) =

—g—z +...} is a morphism of torsors and from Proposition 2.2 that the diagram of Proposition
2.6) commutes.

For later use, let us make the group morphism GT1(k) — u?k[[u?]] underlying ® — log T's
explicit.

is the morphism v :

u?k[[u]] is a morphism of

Lemma 6.2. For f € GTy(k), there is a unique I'¢ € exp(u®k[[u?]]) such that
Ly(—a—b)
here we use the isomorphism f,/f) ~ abk[[@,b]] given by (class of (ada)*(adb)!([a,b])) —

a5t The map GT1(k) — w?k[[u?]], f — logT; is a group morphism and I't.e =T
for any f € GT1(k), ® € My(k).

llog f(e", )] = 1 —

Proof. The map f» — k[@, D], ¥ — (b3y1))? also induces an isomorphism f, /f§ ~ abk|[a, b]],
which takes the class (ad azk(ad b)!([a,b]) to (—1)k+l+161i+15lt1. So for ¢ € fb, we have
(b0)** (@, b) = —[¢](~a, ~b) (where ¥ [¢)] is the map J; — f5/f5 ~ abk|[a, b])).

So (6) may be rewrltten
_ T's (—E - B)

F@(-E)F@(—E) '

If now 1, o € f}, we have (e~ *ae®,b) € f, and (e~ “ae®,b)] = (1 — [a(a,b)])[¢(a, b)].
Indeed, when v(a,b) = (ada)*(ad b)!([a,b]), one checks that the part of ¥ (e~%ae®,b) con-
taining « more than twice lies in f’z’ , and the part containing it once has the same class as
(ada)*(ad )" ([« a], b]).

If now f € GTy(k), we have (f * ®)(a,b) = ®(a,b)f(® " (a,b)e?®(a,b),e’), so

[log(f * ®)(a,b)] = [log ®(a,b)] + [log f(2~" (a,b)e*®(a, b), e")]
= [log ®(a, b)] + [log f(e, ¢")] — [log ®(a, b)][log f(e”, ")].

[log @) (@, b) =

SO

(15) 1 — [log(f * ®)(a,b)] = (1 — [log (a, b)])(1 — [log f(e”, ")).
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If fix &y € Mi(k) and set I'f(u) := I fua,(u)/To, (v), then we get

_ Ty(-a)y(-B)

1 - [log f(ea7 eb)] Ff(—a — 5)

as wanted. Moreover, (15) implies that I'f.o = I'fT's, which also implies that f — I'y is a
group morphism. (I

7. DIRECT CONSTRUCTION OF THE MAP GT;(k) — KV(k)

We will now sketch a proof of (f € GTi(k)) = (ay € KV(k)), independent of the
nonemptiness of M (k).

7.1. Action of GT;(k) on completed braid groups. Let C be a b.m.c. We denote by
Bxy : XY - Y®Xandaxyz: (X®Y)®Z — X®(Y®Z) the braiding and associativity
constraints. For O € Ob(PaB) of length n and any Xi,..,X,, € Ob(C), we construct
the tensor product O(Xy, ..., X,) of Xi,..., X,, with parenthesization O. We say that C is
prounipotent if for any X7, ..., X, and any O, the image of PB,, — Aut¢(O(Xq,..., X)) is
prounipotent (it suffices to require this for a given O). If C is a prounipotent b.m.c. and
f € GT1(k), we construct a new b.m.c. C as follows: /C is the same as C at the level
of objects and morphisms, the composition and the tensor product of morphisms are not
modified, but the braiding and associativity constraints are modified as follows:

—1
Bxy =0xy, dxyz=axyzof(BrxBxy,axy.z0BzyPyzoaxyz)

We then have f1(f2C) = /1*/2C. Moreover, the action of GT1(k) on BMC is functorial,
so a tensor functor ¢ : C — D and f € GT;(k) give rise to /¢ : fC — FD. Note that
for 0,0’ € Ob(C), and under the identifications /C(O,0’) = C(0,0"), 'D(¢(0), p(0")) =
D(p(0), p(0")), the map ‘p(0,0") : 1C(O,0") — "D(¢(0), p(0")) coincides with ¢p(O,O') :
C(0,0") — D(¢(0),9(0")).

Let PaBy be the completion of PaB obtained by replacing each group B,, by its comple-
tion B, (Sy, k) relative to the morphism B,, — S,,. By universal properties, we have a unique
morphism ¢; : PaB — /PaB which is the identity on objects. If then fi, fo € GT1(k), we
have

(16) Npry 0 b = Gfinpes

indeed, both terms are tensor functors PaBy — /1*/2PaBy which are the identity on objects.
If now O € Ob(PaB) has length n, ¢ gives rise to a group morphism ¢(O) : PaBy(0O) —
PaBy(0O). We denote by

a% : Bu(Sn, k) = By (Sa, k)

the group endomorphism derived from ¢ (O) and the identifications PaBy(O) = /PaBy(0) =
B,.(Sn, k). Identity (16) and the identification of fl&% with d% imply

~0 ~0O _ ~0O
O, OQf = Qfixfa

so we have a group antimorphism GT;(k) — Aut(B,,(S,,k)), f — d?.
&O
B.(Sn. k) - B,(Sn. k)
It is easy to see that we have a commutative diagram N J SO 07]9
Sn

restricts to an automorphism ¢ € Aut(PB, (k)).
If now O,0" € Ob(PaB) have length n, then canp o € PaBg (O, O') is the morphism cor-
responding to the trivial braid. Then (bf(canoﬁof)ocanalo, € PaBy(0). Let f°" € PB, (k)
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Tr—cang o/ oxrocan

PaB(0) — 27 PaB(0)
be the image of this element. Since the diagram N %
B,.(Sn, k)
commutes, we have
(17) a9 =Inn(f9%)0a?.

7.2. Actions of GT;(k) on free groups. Let us index the generators of PB,, (k) by x;;,
0 < i< j<n-—1. Recall that the subgroup of PB, (k) generated by o1, ..., Zo,n—1 is
isomorphic to F,,—1 (k). We set X; = zp; fori =1,...,n — 1.

Proposition 7.1. Fach d? restricts to an automorphism a? € Aut(F,_1(k)), such that
for any i, oz?(Xl-) ~ X;.

Proof. Let us index the letters of O by 0,....,n — 1. For i = 1,....n — 1, let O; be an

object of PaB of length n, in which the letters i — 1 and ¢ appear as ...(ee)..... We have

Xi = (0'0...0'1',2)_10'1-2_10'0...0'1',2. We have &?(0’0...0’1',2) = 009...0;—2 " Di, where Pi € PBn(k)

On the other hand, d?(oi__l) = fo’oid?(ol:_l)(fo’oi)’l and d?(oi_l) = o0,.1 as B, ~
PaB(0;) takes o;_1 to idS"™* ®Pe,0 & id®" 2 So

af (07 1) = fOC o (F90) 7,

with a{*?" € PB,, (k). Then
~O
ay

(Xi) = (00.-.0i—2p;) " £ 07 1 (f9O) Log...0i2p;

(18) —lf0,0i

= p;l(do...di_g) (Uo...Ui_g) 'Xi . (same)_l.

As p; Hog...0i-2) "1 fOO(0¢...0i_3) belongs to PB,(k), and as PB,(k) acts on F,_;(k)
by tangential automorphisms, we obtain that d?(Xi) lies in F,,—1(k) and is conjugated in
Fn_l(k) to Xl O

Similarly to Proposition 3.2, one can prove:
Proposition 7.2. If O = ¢ ® O, where O € Ob(PaB), then a?(Xl...Xn_l) =X1..X,_1.

We then have
o’ 0,0’ 0.
this is an identity in Aut(F,_1(k)), where Ad(a?’ol) is not necessarily inner.
We also record the identities
~0 -0 O e} o_ .0
(19) Hisd = Mo OQf,  Hfxp = He ©Qf -

7.3. The map GT;(k) — KV(k). Let us fix an element f € GTy(k) and denote &9, of
simply by ao, ao.
As in Subsection 4.5, one proves that

PB,(k) Y PB4 (k)
(20) aol o la()(i)
PBn (k) 1,2,..., w+1,..., n PBn+1 (k)

commutes. Using Proposition A.3, one then proves

1, it 1,n i+l
(21) aom = ao

Similarly to Proposition 5.1, one proves that
1) Oé.(..) = Oéf.
2) fo((oo)o),o(o(oo)) — f(I127x23)-
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As in Subsection 5.1, one proves that this implies
(22) Ad f(x12,x23) 0 04?’3 o a}c 2= a}’z?’ o a?’?’.

As in Subsection 5.2, one can give three proofs of the fact that af(XY) = XY; Similarly to
Subsection 5.3, one then proves that identity (22) then implies that J(ay) is a é-coboundary.

Let us explain this proof in some detail. Since J(Ad f(z12,z23)) = 0 and J(a?’?’) =
J(ap)'?3, we get by applying J to (22)

Ad f(x12,223) - J(af)ﬁ’?’ + (Ad f(z12,223) © a?’?’) J(ap)t? = J(af)ﬁ’3 + J(ay)??
Applying the inverse of (22), we get
(@)1 (a7 - Tar) P + (a7 J(ag))'? = (@237 (a7 (@) + (af - T(ap))?
Now af(XY) = XY implies that a}’Q C4123 = 123 and similarly with 1,23, so 5(04;1
J(as) = 0. As %, 3, Ty — ... is acyclic in degree 2, there exists 3 € <, with valuation
> 2 such that o' - J(ay) = 6(8), so J(ay) = af - 6(B). Now ap(XY) = XY, ay(X) ~ X,

o(5
ap(Y) ~Y imply that oy - 5(B) = 6(B), so J(ay) = 6(B). It follows that J(ay) has the form
6(8) = (B(log(e”e’)) = B(x) — B(y))-

Remark 7.3. (22) can also be proved directly, checking the identity on each of the generators
of F3(k) and using only the duality, hexagon and pentagon relations. This proof then extends
to the profinite and pro-I cases.

8. THE JACOBIANS OF jig,0 AND a?

8.1. Telescopic formulas. If O € Ob(PaB) has the form O = ¢ ® O’, with |O’| = n, then
one proves by using (4) that po expresses directly in terms of g, for example

1234567,89 , 1234,567 8,9 12,34 5,67 1,2 3,4 6,7
He((((s0)(00))(s(00)))(00)) = Ha He e Po' Ko Mo He He -

He®0O" = H H Né(u) Rl );

n>0veN(T"),d(v)=

The general formula is

here T” is the binary planar rooted tree underlying O'; N(T") is the set of its nodes; d(v)
is the degree of v (distance to the root of the tree); L(v), R(v) is the set of left and right
leaves of v (these are disjoints subsets of {1,...,n}). The first product is taken according to
increasing values of n (the order in the second product does not matter as the arguments of
this product commute with each other). Here is the tree corresponding to the above example
(Figure 3):

degree 0
degree 1

degree 2
degree 3

FIGURE 3. There are 8 nodes
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Similarly, using (21), one proves that for f € GT;(k), we have
-®O L(v),R(v)
H H af :
n>0veN(T"),d(v)=
8.2. Computation of Jacobians. Let u, := He(e...(00))- Then:
Proposition 8.1. J(u,) = (i logTae(z;) —logTa (Y i, @i)).

(We identified u,, with its composition with e*: — X;, which belongs to TAut,,.)

Proof. We have p,, = uclbz "oui?’" ..oy L7 One then proves by descending induction
on k that J(up*tt-m oup "y = (El: logT(z;) — logTe (D1, x;)), using the fact
that the action of yf kH ™ on the various (logT's(z;)) as well as on (logTo (> i, x;)) is
trivial. (]

If now O € Ob(PaB) is arbitrary with with |O| = n + 1, then:
Proposition 8.2. J(pe,0) = J(un) = (> y logTae(z;) —logTa (Y1, ;).
Proof. We have uo = Ad®o, o o un, where O,, = o(...(ee)). We then use the cocycle

ns

property of J, the above formula for J (), the fact that J(Ad g) =0 for g € exp(t,1), and
the following lemma:

Lemma 8.3. If g € exp(t,s1), then (Adg) (w1 + ... + 2) ~ 1 + oo + Ty,

Proof of Lemma. Decompose a € t,41 as ag + al’ """ " with ag € f, and a; € t, (the
map ai +— a%’Q """ " is the injection t, — tn41, ti; — ;). Then [t;j,z1 + ... + z,] = 0 for
i,j € {1,..,n}, 0 [ay® " @ 4 .. 4+ 25] = 0, 50 [a, 21 + ... + 2] = [ao, x1 + ... + 2], Tt
follows that if g € exp(t,41), there exists x, € exp(f,) such that (Adg)(zy + ... + )

g(@1 + .+ xp)g O O

We then have:
Proposition 8.4. J(af) = (37, logTs(log X;) — log Ty (log [T, Xi)).

Proof. Fix ® € M; (k). We have #?«p =pg o oz?, S0 J(u?@) = J(uQ) + ug o J(a)}?, It
follows that uq) ° J( ) = (3 logTy(xi) —log T (30 2i)). The result then follows from
'u’th(X') y Hy (Xl X ) ~ 611+”'+z", "

Remark 8.5. In [AT], the Lie subalgebra sder,, C tdet,, of special derivations (normalized
special in the terms of Ihara) was introduced: sder,, = {u € ter,|u(zy + ... + z,) = 0}.
Let sdet,, be the intermediate Lie algebra sdet,, = {u € tdev,|Tug € fu1|u(zy + ... + ) =
[ug, 1 + ... + 2]} (special derivations in Thara’s terms). So sdet,, C sdet, C tder,. Then
Lemma 8.3 says that we have a diagram

t, —  50et,

! !

thy1 — sder, < tder,

Remark 8.6. Set SolKV, (k) := {1, € TAut,, |pn(e®'...e*) = 1T F2n and Ir € v?k|[u]]|J (pn) =

(r(>>; @) — >, r(x;))}. This is a torsor under the action of the groups KV, (k) := {a,, €

TAut,, |a,(e*...e™) = e*'..e® and Jo € u?k[[u]]|J(a) = (o(loge® ...e™) — >, o(xi))}

and KRV, (k) defined similarly (replacing e®*...e®» by e***-T¥»)  These are prounipo-

tent groups; the Lie algebra of KRV, (k) is trv,, := {u € ter,|a(d ,z;) = 0 and 3s €
2k[[u]]|j(a) = (s(3°; @) — 3, 8(x;))}. It contains as a Lie subalgebra fro!) := {a € trv,|s =

0}, which is denoted ¢v,, in |[AT|. One can prove that if |O0’'| =n and O = ¢ ® O', the map

M (k) — SolKV,,(k), ® — us,o is a morphism of torsors.
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9. ANALYTIC ASPECTS
In this section, the base field k is R or C.

9.1. Analytic germs. Weset Ry {{z}} := {f € R4[[=]]|f has posititive radius of convergence}
and Ry {{z}}o :={f € Ry {z}}|f(0) = 0}. If f, g € Ry [[r]], we write f < giff g— f € Ry [[r]].
We define f < g similarly when f,g € Ry [[r1,...,7]]-

Let V, E be finite dimensional vector spaces and let |.|y,|.|z be norms on V,E. The
space of E-valued formal series on V' is E[[V]] = {f = > >0 fn. fn € S"(V*) ® E}.
For f, € S*(V*) ® E, viewed as an homogeneous polynomial V' — E, we set |f,| :=
sup, (| fn(v)|e/|v[f;).  An analytic germ on V' (at the neighborhood of 0) is a series
f € E[[V]], such that |f|(r) := >, 5 [fulr™ € Ri{{r}}. We denote by E{V}} C E[[V]]
the subspace of analytic germs, and by E{{V}}o C E[[V]]o the subspace defined by fo = 0.

If fe E{V}} and a =), ~;a,™ € Ry[[r]]o, we say that a is a dominating series for f
is | fu] <, for any n; we write this as |f(v)|z < a(|v]y).

If V4,..., Vj are finite dimensional vector spaces with norms |.|v;, ..., |.|v;, then we equip
Vi...0V; with the norm |(v1, ..., vk)| := supy, |vi|v,. If f is an analytic germ V1 &...&V, — E,
we decompose f = > fn, Where fn : Vi x ... x Vi — E is the n-multihomogeneous
component of f. We then set

| fal == SUD(g1,...,zx) €], (Vi—{0}) | (21, ---afﬂk)|E/|iU1|7xl/i-~|$k|7\1/:-

Then f is an analytic germ iff | f|(r1,...,7n) = > [falr1"..rp® € Ry[[r1, ..., 7x]] converges in
a polydisc. Ifa =3 >0 Qneni T et e Ry([r, ..., mx)], we write | f(vq, ..., vx)|p <

Let now g be a finite dimensional Lie algebra; let |.| be a norm on g; let M > 0 be such
that the identity |z, y]| < M|x||y| holds.
The specialization to g of the Campbell-Baker—Hausdorff series is a series xy = cbh(z,y) €

allg x gllo-
Lemma 9.1. 1) The CBH series is an analytic germ gx g — g; we have |zxy| < 57 f (M (|z]|+
ly])), where f(u) = fou—wdv.

2) gxg—g, (r,y) — 1% (y) is an analytic germ, and |e*3% (y)| < eMI=l]y].

Proof. 1) is proved as in [Bk], not making use of the final majorization T—is < 1. Using
Dynkin’s formula, one can prove that 2) follows from |(ad z)"(y)| < M™|z|"|yl. O

9.2. TAut;"(g) and toer?™(g). We set TAut,(g) := {(a1, ..., an)|a; € g[[g"]]o} and define on
this set a product by (a1, ...,a)(b1,...,bs) := (c1, ..., ¢n), where

i1, ooy ) o= by(€31 @) () eadan(@imn) (0 V) s qy (21, 0 @)
This equips TAut,(g) with a group structure. We set TAut, " (g) = {(a1,...,an)|a; €
a{{a" Ho}-
Proposition 9.2. TAut!"(g) is a subgroup of TAut,(g).
Proof. Let (a1,..,a,) and (b1, ...,b,) belong to TAut;"(g). Let a(r),(r) € Ry{{r}to

be germs such that the identities |a;(x1, ..., Zn)| = a(sup; |xi]), |bi(1, ..., zn)| =2 B(sup; |zi|)
hold. Then

lei(z1, .oy zn)| = Far(as (@, .., 20)| 4 |bi (€299 (21)), ..., €249 (,))])
< far(asup, 2]) + B(eMCw 7D sup, ) = y(sup, |21,
where fys(u) = 3 f(Mu) and v(r) = far(e(r) + €M 3(r)) has nonzero radius of conver-
gence. Here we use the compatibility of norms with composition: namely, if f € E[[V] x

- x Vollo and g; € Vi[[W]lo, with [f(v1,...,vn)| = a(|v1], ..., |va]) and [gi(w)] = Bi(|w]),
then h := f € (g1,...,9n) € E[[W]]o and |h(w)| = a o (f1,...,0n)(|lw]). We also use the
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non-decreasing properties of elements of Ry[[r1,...,mn]]o (i-e., if F € Ry[[u1,...,ux]]o and
ug, u) € Ry[[re, ..., mi]]o with uw; =< uf, then F(uq,...) = F(ul,...). So (a1,...;an)(b1,...,b,) €
TAut2"(g).

If now (a1, ...,a,) € TAut;*(g), then its inverse (b1, ..., b,) in TAut,(g) is uniquely deter-
mined by the identities

i1,y n) = —ag (2401 @) () ead b (@) (g Yy

Let us show that each b;(z1,...,2,) is an analytic germ. For this, we define inductively the
sequence b(F) = (bgk), ...,bslk)) by b = (0, ..,0), and

ad b'F)
bz(‘kJrl) (xla ey fL'n) = —ai(edd blk (whm’wn)(xl)u ceeey ead bslk)(mhm’wn)(x"))'

One checks that b*) = p(*=1) 4 O(2*), so the sequence (b*));>o converges in the formal
series topology; the limit b is then the inverse of a = (ay, ..., an).

Let us now set 0 := sup; |b§k)| (if wi(r) = > h>0 u; k€ Ry [[r]] is a finite family, we set
(sup; ui) (1) == 30 (sup; u; 1)r*). We then have

8D (1, )| = asup, [0 @) (2)]) < (MO 1D gup, [ ),

S0 Bri1(r) < a(e?(r).
We now define a sequence (vx)r>0 of elements of R [[r]]o by o = 0,

Vi1 (r) = a(eMW(T)T)-

As the exponential function, mutiplication by r and a are non-decreasing, we have 0 = vx.
On the other hand, we have yx(r) = v,_1(r) + O(r*), so the sequence (y4); converges in
R4 [[r]]o (one also checks that this sequence is non-decreasing). Its limit v then satisfies

(23) v(r) = a(eM ),

It is easy to show that (23) determines v(r) € R[[r]]o uniquely. On the other hand, the
function (vy,7) — v — a(eM¥r) =: F(v,r) is analytic at the neighborhood of (0,0), with
differential at this point 0,F(0,0)dy + 0,F(0,0)dr = dy — Ma/(0)dr. We may then apply
the implicit function theorem and use the fact that the dy-component of dF'(0,0) is nonzero
to derive the existence of an analytic function 7, (r) satisfying (23). By the uniqueness of
solutions of (23), we get that the expansion of V4, is v, so v € Ry {r}}o.

Now [0 (21, ..., )| = Br(sup; |z:]) < A (sup; |[z:]) < v(sup; |z:]), so by taking the limit
k — oo, |bi(x1, ..., xk)| = y(sup, |z:]), which implies that b; € g{{g"}}o, as wanted. O

According to [AT], we have a bijection
k : TAut, — e, g— ¢ —glg™ !,

where / is the derivation given by z; — x;.

Set tery(g) = {(u1, ..., un)|ui(x1, ..., zn) € g[[g"]]0}, and wer?™(g) = {(u1,..., un)|u; €
g{{g" o} C toer,(g). We have maps TAut,, — TAut,(g), toer,, — tder,(g) induced by the
specialization of formal series.

Lemma 9.3. 1) There exists a map rg : TAut,(g) — tder,(g), such that the diagram

TAut,, 5 toer,
! |
TAut,(g) = toer,(g)

commutes.
2) This map restricts to a map k" : TAuty"(g) — toery"(g).
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Proof. 1) If a;,b; € f, are such that g = [e,....e"], g=! = [e™, ...,e], then k(g) =
u = [uy, ..., up], with

1— ead a;

i(21, .y Tn) = ( (@) (e 0t (), 0 i) ()

ada;
and 041 = é(az) = %\t:l

defined as %‘tzlai(ml, oty (or 30,50 kaf, where af is the degree n part of a;).

a;(tz1, ..., txy). So we define kg by the same formula, where a; is now

2) If the functions a;, b; are analytic germs, then so is a; and therefore also each w;. O

Recall also from |AT| that if 4 € TAuts, p(x*xy) = z+y and J(u) = (r(z)+r(y)—r(z+y))
(i-e., p € SolKV(k)), then u := —x(u~t) = [A(z,y), B(z,y)] satisfies:

(KV1) 24y — gz = (1— e ™) (A(x, ) + (449~ 1)(B(z,y),

(KV3) j(u) = (¢(z) + ¢(y) — ¢(z * y)), where ¢(t) = tr'(t).

Let ®kz be the KZ associator, Py (a,b) := Pxz(a/(271),b/(271)) € M1(C) and pxz :=
M, Let ukz := #(pgy)- Then J(ukz) = (rkz(x) + rxz(y) — rkz(z * y)), where rgz(u) =
— > o (2mi) "¢ (n)u™/n, therefore

Jluxz) = (¢pkz(v) + dxz(y) — ¢xz(z * y)),

where ¢kz(u) = —3_,5,(271)7"((n)u". Now the real part of this function (obtained by
taking the real part of the coefficients of ™) is
1 U U
R
== —1+ ).
Kz () 2(€u_1 +2)

Let us now set ug := [Ar(z,y), Br(x,y)], where the real part is taken with respect to the

natural real structure on 5. Then by the linearity of (KV1), (KV3), we have:
(KV1) z4y—yrz=(1—-e ) (Ag(z,y))+ (Y —1)(Br(z,y))

. 1, =z Y T*yY
KV3 == _
RV3) jlwr) =5+ -1 @1
9.3. Analytic aspects to the KV conjecture (proof of Theorem 2.8). Recall that
log k7 € f2. We denote the specialization of this series to the Lie algebra g as (log Pkz)? €

gllg*]Jo-
Proposition 9.4. (log ®x7)? is an analytic germ, i.e., (log Pkz)?® € g{{g*Jo.

—1).

Proof. Recall that Ay = U(f2) is the free associative algebra in a,b. For x € A, set

|z]a, = SUPN>1SUPm, ,mye My (C) [[2(m1, m2)|l.

Here ||.|| is an algebra norm on My (C). Then |z|4, is < Zleunzo{o,l}" |zr|, where x =
Yo xrer, and for I = (i1,...,i,), €1 = €;,...€;,, eg = a, e; = b. It follows from the Amitsur—
Levitsky theorem (JAL|) that (Jz|4, = 0) = (z = 0); indeed, by this theorem, x(m1,m2) =0
for my,mge € My(C) implies: (a) that  is in the 2-sided ideal generated by ab—ba if N = 1;
(b) that = 0 if N > 1. It follows that |.|4, is an algebra norm? on As, in particular
|Iy|A2 < |I|A2|y|A2'

We then define a vector space norm |.|s, on fo by |z|;, = |z|a,; we have |[z,yl;, <

2|‘T|f2 |y|f2'

For n = (n1,...,n4) € N% and f a function on (f2)¢ (resp., R?), we denote by f(&1, ..., €d)n
(resp., f(t1,...,ta)n) the n-multihomogeneous part of f, which we view as a multihomoge-
neous polynomial on (f2)¢ (resp., R?).

Lemma 9.5. For any n, we have the identity

[log(e®...e®)nly, < ((log(2 — €™ ™)™ )0) Jiefyy otumléaly,

9We will not use (lz|a, = 0) = (z = 0), so our proof is independent of the Amitsur-Levitsky theorem.
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Proof of Lemma. We have for any n, [£]"...§[4, < |§1|?21...|§d ;’2 SO

(€8t = Dnlay < (" = V)i ey, ota=lealyy

_\k+1
Then log(eft...eS4),, = Dk % DI nk)‘n1+___+nk:n(651 e — 1) . (e81efh —1),,
SO

|10g(e£1 |A2 < Z Z (et1+...+td _ 1)n1_“(et1+...+td _ 1)nd)t1:‘51‘fz ta=|€als,

= P T TR
1 k ctay—
= (7@ = D0n), e emtedy, = (0082 =€) )=,
k>1
O
Let a(t) be an function [0, 1] — f, of the form a(t) = > k1 0k(t), where ay(t) € f2[k] (here
k is the total degree in a, b) and fo lar(t)]s,dt < oco. Let ug,u; be solutions of v’ (t) = a(t)u(t)
with ug(0) = u1(1) = 1, and U := uj “u.
Lemma 9.6. Forn > 1, let (logU), the degree n (in a,b) part of logU. Then
S log U)alp,r™ < log(2 — eXrz " J3 lex(0liz ity 1
n>1

Proof of Lemma. Let Lie(n) be the multilinear part of f, in the generators 1, ..., x,. We
denote by wy, (21, ..., z,) € Lie(n) the multilinear part of log(e*!...e*).

Let now a, be the coefficient of ¢1...t,, in the expansion of log( — elit ) =L (this is
also the nth derivative at t = 0 of log(2 — e*)~!). Specializing Lemma 9.5 for n = (1,..,1),
we get the identity

|wn(§1, "'afn)|f2 < an|§1|f2---|§n|f2

for 61, vy &n € Fo.
Now log U expands as

logU = Z/o wp(a(ty), ..., a(ty))dty...dt,

nS0/0<ti<<tn<1
(see e.g. [EG]). It follows that
(logU)y = Z Z / Wy (ag, (t1), ..., ak, (tn))dt1...dt,
’ﬂ>0 kly ;kn‘ Z k? =k <t1<~~~<tn<1

and therefore

(log U)kls, < o > / \ar, (61) 5|k, (tn) 5, dt1 ...ty

’H,ZO k1> ;knlz k? =k 0<t1 <. <t <1

Now the generating series for the r.h.s. is log(2 — e>=+21 ™ lar®li2d8 =1 hroving the result.

O
According to [Dr], Section 2, if we set
o 1 (= log(1 — t))*(~logt)’ k !
alt) = ENY(2m i)k+i+d t—1 (adb)*(ada) (B),

k>0,1>1

then ®x 7 = U. We have |(adb)*(ada) (b)]s, < k + 142 < 28+ 50

1 (~log(l —t)*(~logt)
Z ak+HH1EI 1—¢
E>0,1>1,k+1+1=n

lan(t)] <
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Then we have the inequality of formal series in r

/Ia )y dt</ e (—log(1— 1) (—logt)'
n>1 0

hH+1 ) 1—t
k>0,1>1

= 7T/ (1—t) "= (¢t~ = —1)dt.

Now the identity fol t2(1 — t)°dt = %, valid for $(a), R(b) > —1, implies that if
R(r) < 0, then

_— , 1, D(1-2r)?

Q- FEF - Ddt==(1 - ——— ).

0o = 30— )

r

This implies that the radius of convergence of %fo (1 —t)"1=%(t—= — 1)dt is 1/4, so this
series belongs to Ry {{r}}o. Plugging this in Lemma 9.6, we get
~ r(1—2r)?
Z |(10g (I)KZ)n|f2Tn = 1Og(2 - e%(li F(lljhn) ))71a
n>0
where the series in the r.h.s. lies in R {{r}}o (being a composition of two series in Ry {{r}}o).

Let us now prove that (log ®xz)? € g{{g?}}o is an analytic germ. By Ado’s theorem, there
exists a injective morphism p : g — My (k), where k = R or C, hence an injective morphism
p:9— Mn(C). Equip g with the norm |z|g := ||p(z)||. We recall that all the norms on g
are equivalent, so it will suffice to prove analyticity w.r.t. |.|g.

The degree n part of the series (log ®kz)? is the specialization to g of (log ®kz),. Now if
¥ € fa[n] and ¢® : gx g — g is its specialization to g, we have |9 (z, y)|g = || (p(x), p(y))|| <
65 sup(13@), 115) D" = [¥l5. supfalgs [ylg)", therefore (1] < [¢]g,. We then have

~ ~ r(—2r)?
S (ogdica)t i < S [(ogbrca)nlp,r™ < log(2 — ot (-5 )) 1,
n>0 n>0
together with the fact that the series in the right has positive radius of convergence, this
implies the analyticity of the series (log Pkz)®. O

Proposition 9.4, together with the local analyticity of the CBH series, implies that the
specialization of y5  belongs to TAuts"(g). It follows that A(z,y), B(x,y) are analytic
germs, and so

(KV2) (A%, B®) is an analytic germ g2 — g°.

All this implies that (AR, B¥) is a solution of the ‘original’ KV conjecture (as formulated
in [KV]) and proves 1) in Theorem 2.8.

Let us now prove Theorem 2.8, 2). One checks easily that if (A, B) is a solution of the
‘original’ KV conjecture, then (4s, Bs) := (A + s(log(e®e¥) — z), B + s(log(e®e¥) — y)) is
a family of solutions. In fact, if u € SolKV(k) and [A, B] = —x(u~ '), then [As, Bs] =
—r(p=}), where s := Inn(e*®+¥)) o p; this corresponds to the action of ‘“trivial’, degree 1
element of £ro on SolKV (see[AT]).

Finally, let us prove Theorem 2.8, 3). Let o be the antilinear automorphism of fz such that
o(z) = —y, o(y) = —x. The series Pk (a,b) is real, therefore ®xy(a,b) = Pxyz(—a, —b) (the
bar denotes the complex conjugation). This implies that uxz oo = Inn(e_(”y)/?) 000 UKZ.
Using 0ofoo™ ! =/ and l(x +y) = + vy, we get

_ 1 .1
(K7 © 0 0 pgg) 0 Lo (pxcz 00 0 puyez) ™ = {+mn(; (2 +y)),

where inn(z+4y) is the inner derivation z — [z+y, z] of f». Using now gy (x+y) = log(e®e?),
we get

-1

_ _ _ .1 z
(00 pgy) olo (g0 pugy) ™t = gy olopukz + 1nn(§ log(e®eY)).
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Since coloo™t =4, p=tolop—{=—[Akz, Bkz] and inn(3 log(e®e¥)) = [1 (log(e®e¥) —
z), 5(log(ee?) — y)]

1 1
00 [Awz, Biz] o 07" = [Akz, Biz] — [5(log(e"e”) — z), 5 (log(e"e”) — y)].
This implies
1 1
(Brz(—y, —2), Axz(~y, —2)) = (Akz(2,y), Bz(z,y)) — (5 (log(e"e’) ~2), 5 (log(e”e*) —y)).
If now (A, B') := (Akz, Bkz) — +(log(e®e¥) — x,log(e"e¥) — y), this implies

(B/(_ya _‘T)v A/(_ya _‘T)) = (A/(Ia y)v B/(Ia y))v

which by ta‘king real parts 1mp11es (371/4(_?/7 —LL’), A71/4(_y7 —!E)) = (A,1/4(.’II, y)u B,1/4(£II, y));
proving Theorem 2.8, 3).

APPENDIX A. RESULTS ON CENTRALIZERS
A1l. The centralizer of ¢;; in t,.

Proposition A.1. Let i < j € [n]. If x € t,, is such that [z,t;;] = 0, then there exists A € k
and y € t,_1 such that x = At;; + Y2t

Proof. We may and will assume that ¢ = 1,7 = 2. We then prove the result by induction
on n. It is obvious when n = 2. Assume that it has been proved at step n—1 and let us prove
it at step n. We have t,, = t,_1 ®f,—1, where t,,_; is the Lie subalgebra generated by the ¢;;,
i#je{l,...,n—1} and f,_1 is freely generated by the t1,,...,tn—1,,. Both t,_1 and f,_1
are Lie subalgebras of t,,, stable under the inner derivation [t12, —]. Then if z € t,, is such
that [t12,2] = 0, we decompose z = ' + f, with 2’ € t,_1, f € fn_1, [t12,2'] = [t12, f] = 0.
By the induction hypothesis, we have 2’ = M5 + (y')123+"~1 where y’ € t,_» and \ € k.

Let us set a; = t;, for ¢ = 1,..,n — 1. The derivation [t12,—] of f,—1 is given by
x1 — |21, 22], 2 — [x2, 1], 2; — 0 for ¢ > 2. In terms of generators y1 = 1, Y2 = 1 + 2,
Y3 = T3uee, Yn—1 = Tp—1, it is given by y1 — [y1,y2], y;: — 0 for i > 1.

Lemma A.2. The kernel of the derivation y1 — [y1,y2], yi — 0 for i > 1 of f,—1 coincides
with the Lie subalgebra fp_o C fn—1 generated by ya, ..., Yn—1.

Proof of Lemma. Let us prove that the kernel of the induced derivation of U(f,—1) is
U(fn—2). We have a linear isomorphism U (f,_1) =~ @kle(fn_z)‘@k, whose inverse takes
U ® ... ®ug to uryru2ys...y1ug. The derivation [t12, —] of U(f,—1) is then transported to the
direct sum of the endomorphisms of U(f,_5)®*

(24) U +— (yéQ) + ...+ yék))u — u(yél) + ...+ yékfl))

(this is 0 of k£ = 1; y;) = 1971 @ 9y ® 19%7%; we make use of the algebra structure of
U(fn_2)®*). Each of these endomorphisms has degree 1 for the filtration of U(f,_o)®*
induced by the PBW filtration of U(f,—2) (the part of degree < d of U (f,,—2) for this filtration
consists of combinations of products of < d elements of f,_2) and the associated graded
endomorphism of S(f,_2)®" is the multiplication by yék) — yél), which is injective if k£ > 1,
so (24) is injective for k > 1; the kernel of the direct sum of maps (24) therefore coincides
with the degree 1 part U(f,—2), which transports to U(f,—2) C U(fn—1). So the kernel of
the derivation [t12,—] of U(f,—1) is U(fn—2). The kernel of the derivation [t12,—] of f,—1 is
then fn—l N U(fn—2) = fn—2- [l

End of proof of Proposition A.1. It follows that f expresses as P(t1n +t2n,t3n, -y tn—1,n)-
Then if we set f':= P(t1 -1,y tn—2n-1), we get f = (f)12> " sox =a'+ f = M2 +
((y/)1,2,...,n—1 + f/)12,3,...,n, as wanted. 0
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A.2. The centralizer of z;; in PB,,.

Proposition A.3. If g € PB, (k) commutes with x12, then there exists A € k and h €
PB,_1(k) such that g = xi,h'23",

Since z;; is conjugated to x12, it is easy to derive from this the centralizer of z;; in PB,, (k).

Proof. Note that z12 commutes with the image of PB,,_1(k) — PB,(k), h — hﬁ>3"“’",
so that Uy := {xi\Qhﬁ>3""’"|h € PB,,_1(k), A € k} is an algebraic subgroup of PB,, (k). Let
U C PB, (k) be the centralizer of x12; then Uy C U, and we need to prove that Uy = U.

We have Uy = exp(up), U = exp(u), where 1y = klog z12®Im(pb,,_; 12:3m pb,) and u =

{z € pb,,|[log z12, 2] = 0}, where pb,, := Lie PB,, (k). Then the lower central series defines a
complete decreasing filtration of pb,,, with Flpb, = pb,, and F*lpb, = [pb,,, Fipb,]. The
associated graded Lie algebra is t,, i.e., t, = ®i>1t,[i] = ®i>1F'pb,,/Fpb,,.

Set Fiu := un Fipb,,, Fiuy := ug N Fpb,. We will prove that the images of Fug and
Fuin t,[i] coincide. Clearly, Im(Fug — t,[i]) C Im(Fiu — t,[i]).

Conversely, projecting the identity [logz12,2] = 0 modulo Fi*lpb,, , we get

(25) Im(F'u — t,[i]) C {z € t,[i]|[t12, 2] = 0},

and since z — x1%-" takes Fipb, _, to F'pb,,, we have (Fipbn_l)ﬁ“'"” C Fiugifi > 1 and

(Flpbn,l)ﬁw"” ® klogx1s C Flug; projecting these inclusions, modulo Fitlpb, , we get
(26)
Im(F'ug — t,[i]) D t,_1[i]** ™ if i > 1 and Im(Flug — t,[i]) D t,_1[1]'* " @ kt1a.

Using (25), (26) and Proposition A.1, we get Im(F'u — t,[i]) C Im(Ftug — t,[i]). It follows
that these spaces are equal, which implies (as both uy and u are closed for the topology of
pbn) that ug = u. So Uy = U. O

Remark A.4. One can also prove Proposition A.3 similarly to Proposition A.1, by induc-
tion on n and using the fact that the automorphism Adz1s of the topologically free group
generated by the x;, identifies with the automorphism exp(adti2) of the topologically free

Lie algebra generated by the t¢;, (using the identification (z1p,T1nTon, Tan, -, Tn-1,n) <
(etln , etinttan , et?:n, - etnfl,n))_
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