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DRINFELD ASSOCIATORS, BRAID GROUPS AND EXPLICITSOLUTIONS OF THE KASHIWARA�VERGNE EQUATIONSA. ALEKSEEV, B. ENRIQUEZ, AND C. TOROSSIANAbstra
t. The Kashiwara�Vergne (KV) 
onje
ture states the existen
e of solutions ofa pair of equations related with the Campbell�Baker�Hausdor� series. It was solved byMeinrenken and the �rst author over R, and in a formal version, by the �rst and lastauthors over a �eld of 
hara
teristi
 0. In this paper, we give a simple and expli
it formulafor a map from the set of Drinfeld asso
iators to the set of solutions of the formal KVequations. Both sets are torsors under the a
tions of prounipotent groups, and we showthat this map is a morphism of torsors. When spe
ialized to the KZ asso
iator, our
onstru
tion yields a solution over R of the original KV 
onje
ture.Introdu
tionIn [KV℄, M. Kashiwara and M. Vergne formulated a 
onje
ture on the form of theCampbell�Baker�Hausdor� (CBH) series. This 
onje
ture triggered the work of severalauthors (for a review see [T2℄). In parti
ular, Kashiwara�Vergne settled it for solvableLie algebras ([KV℄), Rouvière gave a proof for sl2 ([R℄), and Vergne ([V℄) and Alekseev�Meinrenken ([AM1℄) proved it for quadrati
 Lie algebras. All these 
onstru
tions lead toexpli
it rational formulas for solutions of the KV 
onje
ture. The general 
ase was settled inthe positive by Alekseev�Meinrenken ([AM2℄) using Kontsevi
h's deformation quantizationtheory and results in [T1℄. The 
orresponding solution is de�ned over R, and expresses asan in�nite series where 
oe�
ients are 
ombinations of Kontsevi
h integrals on 
on�gurationspa
es and integrals over simpli
es. The values of most of these 
oe�
ients remain unknown.Later, the �rst and last authors gave another proof ([AT℄), based on Drinfeld's theory ofasso
iators. In that paper, the Kashiwara�Vergne (KV) 
onje
ture was reformulated as theproblem of 
onstru
ting spe
ial automorphisms of the free Lie algebra with two generatorswith 
oboundary Ja
obian (see Se
tion 2); the authors also showed that ea
h asso
iatorgives rise to an a�ne line of su
h automorphisms. The solution is de�ned as a nonabelian
o
hain with 
oboundary equal to the asso
iator. Su
h a 
onstru
tion is inspired by thetheory of quantization of Lie bialgebras, and the existen
e problem is solved by showing thatobstru
tions vanish in all degrees.The purpose of the present work is to give a dire
t 
onstru
tion of the map M1(k) →
SolKV(k), Φ 7→ µΦ from asso
iators to solutions of the KV equations (we work over a �eld
k of 
hara
teristi
 0). Namely, for Φ ∈M1(k), µΦ is the automorphism of the topologi
allyfree Lie algebra generated by x, y given by(1)
µΦ : x 7→ Φ(x,−x−y)xΦ(x,−x−y)−1, y 7→ e−(x+y)/2Φ(y,−x−y)yΦ(y,−x−y)−1e(x+y)/2.Our main result (Theorem 2.1) is the identity(2) Φ(t12, t23) ◦ µ

12,3
Φ ◦ µ1,2

Φ = µ1,23
Φ ◦ µ2,3

Φ .This identity implies that the Ja
obian of µΦ is a 
o
y
le, and therefore a 
oboundarya

ording to 
ohomology 
omputations in [AT℄; it 
an then be expressed using the Γ-fun
tion
ΓΦ of Φ (see [DT, E℄). Identity (2) also implies that µΦ is spe
ial, i.e., satis�es(3) µΦ(log(exey)) = x+ y1
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2 A. ALEKSEEV, B. ENRIQUEZ, AND C. TOROSSIAN(see Subse
tion 5.2 and also Proposition 7.4 in [AT℄); we also give a dire
t proof of (3) basedon the hexagon and duality identities satis�ed by Φ. The 
onjun
tion of (3) and of the fa
tthat the Ja
obian of µΦ is a 
oboundary a
tually means that µΦ is a solution of the KVequations introdu
ed in [AT℄.The a�ne line of solutions of the KV equations atta
hed in [AT℄ to Φ then takes theform {Inn(es(x+y)) ◦ µΦ, s ∈ k}, where Inn(g) = (u 7→ gug−1). It remains an open questionwhether all the solutions of the KV equation are of this form.The strategy for proving (2) is as follows. For ea
h asso
iator Φ and ea
h parenthe-sization O of a word in n identi
al letters (the letter is •), Drinfeld and Bar-Natan de�nean isomorphism µ̃O
Φ : PBn(k) → exp(̂tn) from the prounipotent 
ompletion of the purebraid group with n strands to the group asso
iated with the holonomy Lie algebra. Notethat PBn 
ontains the free group Fn−1 as a normal subgroup, while tn 
ontains the freeLie algebra fn−1 as an ideal; we show that the above isomorphisms restri
t to isomorphisms

µO
Φ : Fn−1(k)→ exp(̂fn−1) (in the 
ase of the left parenthesization, this was proved in [HM℄).We note that µΦ may be interpreted as the isomorphism F2(k)→ exp(̂f2) 
orresponding to
•(••), so µΦ = µ•(••) (we write µO instead of µO

Φ when no 
onfusion is possible). We thenshow the identity(4) µO(i) = µ1,2,...,ii+1,...,n
O ◦ µi,i+1

•(••),where O is a parenthesized word of length n and O(i) is the parenthesized word obtainedfrom it by repla
ing the (i+ 1)th letter • by (••). Applying this identity to O = •(••) with
i = 1, 2 and using the identity µO′

Φ = Ad(ΦO,O′) ◦ µO
Φ relating the various µO

Φ , we obtain (2).We then study the torsor aspe
ts of the map Φ 7→ µΦ. While M1(k) is a torsor underthe 
ommuting a
tions of the groups GT1(k) and GRT1(k), SolKV(k) is a torsor under thea
tions of groups KV(k) and KRV(k). We prove that Φ 7→ µΦ is a morphism of torsors, i.e.,there exist group morphisms GT1(k)→ KV(k), f 7→ αf and GRT1(k)→ KRV(k), g 7→ ag,
ompatible with the a
tions (the Lie algebra version of the latter morphism was already
onstru
ted in [AT℄). We give a dire
t proof of these fa
ts, based on the nonemptiness of
M1(k) (a result in [Dr℄); we also sket
h an independent proof of αf ∈ KV(k); its mainingredient is the identity(5) Ad f(x12, x23) ◦ α

f12,3
f ◦ α1,2

f = α1,f23
f ◦ α2,3

f .A similar independent proof of ag ∈ KRV(k) may be given based on
Ad g(t12, t23) ◦ a

12,3
g ◦ a1,2

g = a1,23
g ◦ a2,3

g .It 
an be proved using the te
hniques of [AT℄ that the sets of solutions of both equations area�ne lines, and our result gives expli
it formulas for these solutions. We also observe that (5)
an be generalized to the pro�nite and pro-l setups (i.e., we have morphisms ĜT→ Aut(F̂2)and GTl → Aut((F2)l), f 7→ αf , and (5) takes pla
e in Aut(F̂3) or Aut((F3)l)).Formula (4) and its analogue (5) then enable us to 
ompute the Ja
obians of µO
Φ :

Fn−1(k)→ exp(fn−1) and αO
f ∈ Aut(Fn−1(k)), where O is an arbitrary parenthesized word,

Φ ∈M1(k), f ∈ GT1(k), in terms of in terms of ΓΦ and of the `Γ-fun
tion' of f .Finally, we show that spe
ializing our 
onstru
tion to the Knizhnik�Zamolod
hikov (KZ)asso
iator yields an expli
it solution of the original KV 
onje
ture, where the Lie series arerequired to 
onverge for any �nite dimensional Lie algebra and the Du�o series is requiredto 
oin
ide with the generating series of Bernoulli numbers.A
knowledgements. We are grateful to V.G. Drinfeld and to D. Bar-Natan who posedthe question of how to 
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it solutions of the KV problem in terms of asso
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4 A. ALEKSEEV, B. ENRIQUEZ, AND C. TOROSSIANReferen
es 321. Preliminary resultsIn this se
tion, we re
all the notions of tangential derivations and automorphisms of freeLie algebras, their divergen
e and Ja
obian 
o
y
les, the a
tions of pure braid groups (resp.,in�nitesimal braid Lie algebras) on free groups Lie algebras by tangential automorphisms(resp., derivations), and simpli
ial morphisms between these obje
ts.1.1. Tangential automorphisms, the Ja
obian 
o
y
le, and 
omplexes. Let fn bethe free Lie algebra with generators x1, ..., xn, f̂n its degree 
ompletion (where the generators
xk have degree 1). For u1, ..., un ∈ fn, we denote by [[u1, ..., un]] the derivation of fn given by
xk 7→ [uk, xk]. In this way, we de�ne a linear map (fn)n → Der(fn). Its image is a (positively)graded Lie subalgebra tdern of Der(fn); its elements are 
alled the tangential derivations of
fn. We similarly de�ne tder∧n ⊂ Der(̂fn) as the degree 
ompletion of tdern; it is a pronilpotentLie algebra.If U1, ..., Un ∈ exp(̂fn), we similarly de�ne [[U1, ..., Un]] as the automorphism of f̂n givenby xk 7→ UkxkU

−1
k . This de�nes a map exp(̂fn)n → Aut(̂fn), whose image is the subgroupof tangential automorphisms TAutn ⊂ Aut(̂fn). The exponential sets up an isomorphism

exp : tder∧n → TAutn.De�ne Tn := An/[An, An] as the quotient of the free asso
iative algebra An ≃ U(fn) byits subspa
e of 
ommutators; this is the ve
tor spa
e spanned by the set of 
y
li
 words in
x1, ..., xn. Tn is equipped with an a
tion of Der(fn), indu
ed by the a
tion of Der(fn) on An.We denote by x 7→ 〈x〉 the 
anoni
al proje
tion map An → Tn. Tn is positively graded andwe denote by T̂n its degree 
ompletion; it is equipped with a
tions of Der(̂fn) and Aut(̂fn).One shows that any u ∈ tdern 
an be written as u = [[u1, ..., un]], where (u1, ..., un) isuniquely determined by the 
ondition p1(u1) = ... = pn(un) = 0, where pk : fn → k is thelinear map su
h that u =

∑
k pk(u)xk modulo [fn, fn].We de�ne simpli
ial group morphisms TAutn → TAutm as follows. Let1 φ : [m] ⊃

Dφ → [n] be a partially de�ned map, and let (a1, ..., an) ∈ (fn)n be su
h that ea
h akhas vanishing linear term in xk. We set [[a1, ..., an]]φ := [[b1, ..., bm]], where bℓ(x1, ..., xm) :=
aφ(ℓ)(

∑
k∈φ−1(1) xk, ...,

∑
k∈φ−1(n) xk). This formula de�nes a Lie algebra morphism tdern →

tderm, whi
h indu
es a group morphism TAutn → TAutm, also denoted x 7→ xφ. We will alsouse the notation xφ = xφ−1(1),...,φ−1(n). For example, [[a1, a2]]
12,3 = [[a1(x1 + x2, x3), a1(x1 +

x2, x3), a2(x1 + x2, x3)]].We also de�ne non
ommutative variants of these morphisms as follows. Let φ̃ be a pair
onsisting of a partially de�ned map φ : [m] ⊃ Dφ → [n] as above and of total orders on ea
hof the sets φ−1(1), ..., φ−1(n). We de�ne [[a1, ..., an]]φ̃ := [[b̃1, ..., b̃m]], where b̃ℓ(x1, ..., xm) :=
aφ(ℓ)(cbh(xk|k ∈ φ−1(1)), ..., cbh(xk|k ∈ φ−1(n))); here cbh(a1, ..., ap) = log(ea1 ...eap) and
cbh(as|s ∈ S) is de�ned similarly, for S a �nite ordered set. We use the notation xφ̃ =

xφ̃−1(1),...,φ̃−1(n) (where the elements of φ−1(k) are written in in
reasing order).We then de�ne a `divergen
e' map
j : tdern → Tnas follows. Let ∂k : An → An be the linear maps de�ned by the identity x = ǫ(x)1 +∑n

k=1 xk∂k(x) (where ǫ : An → k is the 
ounit map). We then set
j(u) := 〈

n∑

k=1

xk∂k(uk)〉.1We set [n] := {1, ..., n}.
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an show that j satis�es the 
o
y
le identity
j([u, v]) = u · j(v) − v · j(u),where the a
tion of tdern on Tn is understood in the r.h.s.; j is graded, so it extends to a
o
y
le tder∧n → T̂n. The Lie algebra 
o
y
le j gives rise to the `Ja
obian' group 
o
y
le

J : TAutn → T̂n.

J is uniquely de�ned by the 
onditions J(id) = 0 and (d/dt)J(etxg)|t=0 = j(x) + x · J(g); asa 
onsequen
e, J satis�es the 
o
y
le identity J(h ◦ g) = J(h) + h · J(g).The 
ompatibility of j, J with simpli
ial maps 
an be des
ribed as follows. Any partiallyde�ned [m] ⊃ Dφ
φ
→ [n] gives rise to a Lie algebra morphism fn → fm, x7 → xφ, with

xφ
k :=

∑
ℓ∈φ−1(k) xℓ, and any φ̃ gives rise to a morphism f̂n → f̂m, x 7→ xφ̃, with xφ̃

k =

cbh(xℓ|ℓ ∈ φ−1(k)). These morphisms give rise to linear maps Tn → Tm and T̂n → T̂m.Then one 
an show that j(uφ) = j(u)φ, J(gφ) = J(g)φ, j(uφ̃) = j(u)φ̃, J(gφ̃) = J(g)φ̃.We de�ne a 
omplex T1
δ
→ T2

δ
→ T3... by f(x1) 7→ f(x1 +x2)−f(x1)−f(x2) = f12−f1−

f2, f(x1, x2) 7→ f(x1+x2, x3)−f(x1, x2+x3)−f(x2, x3)+f(x1, x2) = f12,3−f1,23−f2,3+f1,2,et
. It is proved in [AT℄ that this 
omplex is a
y
li
 in degree 2 (the degree of Ti is i). Thekernel of T1
δ
→ T2 is 1-dimensional, spanned by the 
lass of x1 ∈ A1 ≃ T1.We similarly de�ne a 
omplex T̂1

δ̃
→ T̂2

δ̃
→ T̂3... by f(x1) 7→ f(log(ex1ex2)) − f(x1) −

f(x2) = f
f12 − f1 − f2, f(x1, x2) 7→ f(log(ex1ex2), x3) − f(x1, log(ex2ex3)) − f(x2, x3) +

f(x1, x2). It has a de
reasing �ltration by the degree, and its asso
iated graded is the above
omplex, so the 
omplex T̂1
δ̃
→ ... is again a
y
li
 in degree 2. Sin
e log(ex1ex2)−x1−x2 is asum of bra
kets, Ker(T̂1

δ̃
→ T̂2) is again 1-dimensional, spanned by the 
lass of x1 ∈ A∧

1 ≃ T̂1.1.2. Braid groups and Lie algebras of in�nitesimal braids. Let Bn be the braid groupof order n. Bn may be viewed as π1(Xn/Sn, Snp), where Xn = {(z1, ..., zn) ∈ Cn|zi 6= ziif i 6= j} and Snp is the Sn-orbit of the set p = {(z1, ..., zn)|zi ∈ R, z1 < ... < zn}. The�bration Xn → Xn/Sn gives rise to the morphism Bn → Sn, and the pure braid group PBnis de�ned as Ker(Bn → Sn), so we have an exa
t sequen
e 1→ PBn → Bn → Sn → 1; also
PBn = π1(Xn, p).We re
all the Artin presentation of Bn: generators are σ1, ..., σn−1, and relations are givenby

σiσi+1σi = σi+1σiσi+1 (i = 1, ..., n− 2), σiσj = σjσi for |i− j| > 1.We also re
all the Coxeter presentation of Sn: generators are s1, ..., sn−1 (si is the permu-tation (i, i + 1)) and relations are the same as those between the σi, with the additionalrelations s2i = 1 (i = 1, ..., n− 1). The morphism Bn → Sn is then given by σi 7→ si.The group PBn admits the following presentation. For i < j (i, j ∈ [n]), set
xij := (σj−2...σi)

−1σ2
j−1(σj−2...σi).The generators xij belong to PBn, and2

(xijxikxjk, xij) = (xijxikxjk, xik) = (xijxikxjk , xjk) = 1 for i < j < k,and
(xij , xkl) = (xil, xjk) = (xik, xjkxjlx

−1
jk ) = 1 for i < j < k < l.One proves that this 
onstitutes a presentation of PBn, see Figure 1.For any sequen
e (k1, ..., kn) of integers ≥ 0, there exists a unique morphism PBn →

PBk1+...+kn

onsisting in repla
ing the �rst strand by k1 
onse
utive strands, ..., the nthstrand by kn 
onse
utive strands. If we set m := k1 + ... + kn and φ : [m] → [n] is2We set (g, h) := ghg−1h−1.



6 A. ALEKSEEV, B. ENRIQUEZ, AND C. TOROSSIANthe map su
h that φ(k1 + ... + ki−1 + [ki]) = i, we denote this morphism by x 7→ xφ̃ =

x1̃...k1,..., ˜k1+...+kn−1+1...m. This morphism in expli
itly given by
xij 7→

ր∏

i′∈φ−1(i)

(

ց∏

j′∈φ−1(j)

xi′j′ ),where ∏ր
,
∏ց mean the produ
t in in
reasing and de
reasing order of the indi
es.

1

2

3

X

X

X

12

13

23

X

01

02

X03

X

σ

σ

σ
U

V

U V

Product in B_n is from top to bottomGenerators of B_4 Generators of PB_4Figure 1.The Lie algebra tn of in�nitesimal braids is presented by generators tij , i 6= j ∈ [n] andrelations tji = tij , [tij , tik + tjk] = 0 for i, j, k distin
t and [tij , tkl] = 0 for i, j, k, l distin
t.For ea
h partially de�ned map [m] ⊃ Dφ
φ
→ [n], there is a unique Lie algebra morphism

tn → tm, x 7→ xφ given by tφij :=
∑

i′∈φ−1(i),j′∈φ−1(j) ti′j′ (in parti
ular, we have an a
tionof Sn on tn). We often write xφ−1(1),...,φ−1(n) instead of xφ. We attribute degree 1 to ea
hof the generators tij , so the Lie algebra tn is positively graded; we denote by t̂n its degree
ompletion.1.3. The morphism tn+1 → tdern. Let us reindex tij , i 6= j ∈ {0, ..., n} the generatorsof tn+1. One 
he
ks that there is a unique morphism ad : tn+1 → tdern, de�ned by t0i 7→
(xj 7→ [xi, xj ]) and tij 7→ (xi 7→ [xi, xj ], xj 7→ [xj , xi], xk 7→ 0 for k 6= i, j) if i, j 6= 0. Itexponentiates to Ad : exp(̂tn+1) → TAutn. One 
he
ks that j(ad tij) = 0, so the 
o
y
leproperty implies j(adx) = J(AdX) = 0 for any x ∈ tn+1 and X ∈ exp(̂tn+1).The morphism ad : tn+1 → tdern may be interpreted as follows. The Lie subalgebra of
tn+1 generated by the elements t0i, i ∈ [n] identi�es with fn under xi 7→ t0i; it is a Lie idealof tn+1. Then ad : tn+1 → Der(fn) 
an be viewed as the adjoint a
tion of tn+1 on its Lieideal fn ⊂ tn+1.Note that the morphism tn → tn+1, tij 7→ tij is inje
tive, so tn may be viewed as a Liesubalgebra of tn+1; then tn+1 identi�es with the semidire
t produ
t fn ⋊ad tn.1.4. The morphism PBn+1 → TAutn. Reindex the generators of PBn+1 as xij , i < j ∈
{0, ..., n}. Let Fn be the free group with generators Xi (i ∈ [n]). Then: (a) the morphism
Fn → PBn+1, Xi 7→ x0i, is inje
tive; (b) Fn is a normal subgroup in PBn+1. This impliesthat we have an a
tion Ad : PBn+1 → Aut(Fn) of PBn by automorphisms of Fn.This a
tion 
an be made expli
it as follows: if i > 0, then

Ad(x0i)(Xj) = XiXjX
−1
i ,
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Ad(xij)(Xi) = X−1

j XiXj , Ad(xij)(Xj) = (XiXj)
−1Xj(XiXj),

Ad(xij)(Xk) = Xk for k < i or k > j,

Ad(xij)(Xk) = (X−1
j X−1

i XjXi)Xk(X−1
j X−1

i XjXi)
−1 for i < k < j.This extends to an a
tion of PBn+1 by automorphisms of Fn(k). Using the isomorphism

Fn(k) ≃ exp(̂fn) given by Xi 7→ exi , we therefore obtain a morphism PBn → Aut(̂fn). Itsimage is 
ontained in TAutn (sin
e Adxij belongs to this subgroup and the elements xij gen-erate PBn), and sin
e TAutn is prounipotent, the universal property of Mal
ev 
ompletionsimplies that Ad extends to a morphism Ad : PBn(k)→ TAutn.Lemma 1.1. For any g ∈ PBn+1(k), J(Ad g) = 0.Proof. It su�
es to show that J(Ad xij) = 0. For any u ∈ Fn(k), J(Innu) = 0 (where
Innu is v 7→ uvu−1) and Ad(x0i) = Inn(Xi), so it su�
es to prove that J(InnXj ◦Adxij) =

0 for 0 < i < j. Let θij := InnXj ◦ Ad xij , then θij : Xi 7→ Xi, Xj 7→ X−1
i XjXi,

Xk 7→ XjXkX
−1
j for k < i or k > j, Xk 7→ (X−1

i XjXi)Xk(X−1
i XjXi)

−1 for i < k < j.Let u ⊂ tder∧n be the subspa
e of all elements [[a1, ..., an]], where aj ∈ kxi, ai = 0, and for
k 6= i, j, ak ∈ f̂n has the form ak(xi, xj) (ak ∈ f̂2). This is a Lie subalgebra in tder∧n , so expmaps it bije
tively to a subgroup of TAutn. One 
he
ks that exp(u) ⊂ U , where U ⊂ TAutnis the subspa
e of all [[U1, ..., Un]], where Uj ∈ {e

λxi, λ ∈ k}, Ui = 1, and for k 6= i, j, Uk hasthe form Uk(xi, xj) (Uk ∈ exp(̂f2)), and that U is an algebrai
 subgroup of TAutn. Therefore
u ⊂ Lie(U). On the other hand, one 
he
ks that u 
oin
ides with the tangent subspa
e of Uat the origin, so u = Lie(U). It follows that log takes U to u.All this implies that log θij has the form [[a1, ..., an]], where ai = 0, aj = −xi and for
k 6= i, j, ak ∈ f̂n has the form ak(xi, xj). Then j(log θij) = 0, hen
e J(θij) = 0, as wanted.

�Note that the quotient group PBn+1 /Fn identi�es with PBn under xij 7→ xij for 0 < i <
j, x0i 7→ 1. We then have an exa
t sequen
e 1 → Fn → PBn+1 → PBn → 1. Moreover,this exa
t sequen
e admits the splitting PBn → PBn+1, xij 7→ xij . It follows that PBn+1identi�es with the semidire
t produ
t Fn ⋊Ad PBn.Remark 1.2. We will rename x, y (resp., x, y, z, X,Y , X,Y, Z) the generators x1, x2 (resp.,
x1, x2, x3, X,Y , X,Y, Z) of f̂2 (resp., f̂3, F2, F3).2. The main results2.1. The map M1(k) → SolKV(k). Let f̂2 be the topologi
ally free Lie algebra generatedby x, y. Let F2 be the free group with generators X,Y and let F2(k) be its prounipotent
ompletion; we have an identi�
ation F2(k) ≃ exp(̂f2), indu
ed by the morphism F2 →

exp(̂f2) given by X 7→ ex, Y 7→ ey.The set of solutions of the Kashiwara�Vergne equations is (see [KV, AT℄)3 4 5
SolKV(k) :={µ ∈ Iso(F2(k), exp(̂f2))|µ(X) ∼ ex, µ(Y ) ∼ ey, µ(XY ) = ex+y,

and ∃r ∈ u2
k[[u]]|J(µ) = 〈r(x + y)− r(x) − r(y)〉}.Here µ gives rise to an element of TAut2 (using F2(k) ≃ exp(̂f2)) and J(µ) is its Ja
obian.As the kernel of T1 → T2 is equal to ku, r is uniquely determined by µ ∈ SolKV(k), so we3For g, h in a prounipotent group G or its Lie algebra, we use the notation g ∼ h for `g is 
onjugated to

h', i.e., g = khk−1 for some k ∈ G.4If Γ is a �nitely generated group, we denote by Γ(k) its prounipotent (of Mal
ev) 
ompletion. Thereis a group morphism Γ → Γ(k) with the universal property that any group morphism Γ → U , with Uprounipotent, extends uniquely to a morphism Γ(k) → U of algebrai
 groups.5The de�nition given here is equivalent to that of [AT℄ as T1 → T2 → T3 is a
y
li
.



8 A. ALEKSEEV, B. ENRIQUEZ, AND C. TOROSSIANde�ne a map Duf : SolKV(k) → u2
k[[u]], µ 7→ r = Duf(µ); we will 
all r the Du�o formalseries of µ.The set of asso
iators with 
oupling 
onstant 1 is

M1(k) := {Φ(t12, t23) ∈ exp(̂t3)|Φ
3,2,1 = Φ−1, et23/2Φ1,2,3et12/2Φ3,1,2et31/2Φ2,3,1 = e(t12+t23+t31)/2,

Φ2,3,4Φ1,23,4Φ1,2,3 = Φ1,2,34Φ12,3,4}.Theorem 2.1. There is a unique map M1(k)→ SolKV(k), Φ 7→ µΦ, su
h that6
µΦ(X) = Φ(x,−x− y)exΦ(x,−x− y)−1, µΦ(Y ) = e−(x+y)/2Φ(y,−x− y) · ey · (same)−1.The Ja
obian of µΦ 
an be 
omputed as follows. In [DT, E℄ (see also [Ih℄), it was proved7that for any Φ(a, b) ∈M1(k), there exists a formal series ΓΦ(u) = e

P

n≥2(−1)nζΦ(n)un/n, su
hthat(6) (1 + b∂bΦ(a, b))ab =
ΓΦ(a+ b)

ΓΦ(a)ΓΦ(b)
,where ∂bΦ(a, b) is de�ned as above and x 7→ xab is the abelianization morphism k〈〈a, b〉〉 →

k[[a, b]]The values of the ζΦ(n) for n even are independent of Φ, given by − 1
2 ( u

eu−1 − 1 + u
2 ) =∑

n≥1 ζΦ(2n)u2n, so they are related to Bernoulli numbers by ζΦ(2n) = − 1
2

B2n

(2n)! for n ≥ 1(we have ζΦ(2) = −1/24, ζΦ(4) = 1/1440, et
.)Proposition 2.2. J(µΦ) = 〈log ΓΦ(x)+ log ΓΦ(y)− log ΓΦ(x+ y)〉, so Duf(µΦ) = − log ΓΦ.2.2. Torsor aspe
ts. We set
KV(k) := {α ∈ Aut(F2(k))|α(X) ∼ X,α(Y ) ∼ Y, α(XY ) = XY,

and ∃σ ∈ u2
k[[u]]|J(α) = 〈σ(log(exey))− σ(x) − σ(y)〉}and

KRV(k) := {a ∈ Aut(̂f2)|a(x) ∼ x, a(y) ∼ y, a(x+ y) = x+ y,

and ∃s ∈ u2
k[[u]]|J(a) = 〈s(x+ y)− s(x)− s(y)〉}.Here α, a give rise to elements of TAut2 (using F2(k) ≃ exp(̂f2)) and J(α), J(a) are theirJa
obians. As before, we will denote Duf : KV(k)→ u2

k[[u]], KRV(k)→ u2
k[[u]] the maps

α 7→ σ, a 7→ s.Proposition 2.3. KV(k) and KRV(k) are groups. SolKV(k) is a torsor under the 
om-muting left a
tion of KV(k) and right a
tion of KRV(k) given by (α, µ) 7→ µ ◦ α−1 and
(µ, a) 7→ a−1 ◦ µ.6If G is a prounipotent group, we use the notation g · h · (same)−1 for ghg−1 for if g ∈ G and h ∈ G or
Lie(G).7The key ingredient in the proof of this result is the statement that the image of grt1 in f′

2
/f′′

2
is spannedby the 
lasses of the Drinfeld generators. This statement also follows from Theorem 4.1 in [AT℄; indeed, onesees easily that the diagram

f2
ψ 7→〈a∂aψ〉

→ T2

φ 7→φab

→ k[ā, b̄]
↑ ↑
f′
2

→ f′
2
/f′′

2
= āb̄k[ā, b̄]

↑ ↑
grt1 → grt1/grt′

1
ommutes (the upper part follows from the fa
t that f′
2
is freely generated by the (ad a)k(ad b)l([a, b]) andthe bottom part from grt′

1
⊂ f′′

2
); Theorem 4.1 in [AT℄ implies that the image of grt1 → T2 is spanned bythe images of the Drinfeld generators; it follows that the same is true of the image of grt1 → f′

2
/f′′

2
.



DRINFELD ASSOCIATORS AND SOLUTIONS OF THE KASHIWARA�VERGNE EQUATIONS 9In parti
ular, any element of SolKV(k) gives rise to an isomorphism kv → krv betweenthe Lie algebras of these groups, whose asso
iated graded is the 
anoni
al identi�
ation
gr(kv) ≃ krv.The prounipotent radi
al of the Grothendie
k-Tei
hmüller group is
GT1(k) = {f(X,Y ) ∈ F2(k)|f(Y,X) = f(X,Y )−1, f(X,Y )f(Y −1X−1, X)f(Y, Y −1X−1) = 1,

f(x23, x34)f(x12x13, x24x34)f(x12, x23) = f(x12, x23x24)f(x13x23, x34)}(the last equation is in PB4(k)) with produ
t (f1∗f2)(X,Y ) = f1(f2(X,Y )Xf2(X,Y )−1, Y )f2(X,Y ).Its graded version is
GRT1(k) = {g(t12, t23) ∈ exp(̂t3)|g

3,2,1 = g−1, g(A,C)Ag(A,C)−1+g(B,C)Bg(B,C)−1+C = 0

for A+B + C = 0, g1,2,3g3,1,2g2,3,1 = 1, g2,3,4g1,23,4g1,2,3 = g1,2,34g12,3,4}with produ
t (g1 ∗ g2)(a, b) = g1(g2(a, b)ag2(a, b)
−1, b)g2(a, b) (we set a := t12, b := t23).Proposition 2.4. (see [Dr℄) M1(k) is a torsor under the 
ommuting left a
tion of GT1(k)and right a
tion of GRT1(k) by (f,Φ) 7→ (f ∗Φ)(a, b) := f(Φ(a, b)eaΦ(a, b)−1, eb)Φ(a, b) and

(Φ, g) 7→ (Φ ∗ g)(a, b) := Φ(g(a, b)ag(a, b)−1, b)g(a, b).The following Theorem 2.5 and Proposition 2.6 express torsor properties of the map
Φ 7→ µΦ.Theorem 2.5. There are unique group morphisms GT1(k) → KV(k), f(X,Y ) 7→ α−1

f ,where
αf (X) = f(X,Y −1X−1)Xf(X,Y −1X−1)−1, αf (Y ) = f(Y, Y −1X−1)Y f(Y, Y −1X−1)−1,and GRT1(k)→ KRV1(k), g(a, b) 7→ a−1

g , where
ag(x) = g(x,−x− y)xg(x,−x− y)−1, ag(y) = g(y,−x− y)yg(y,−x− y)−1.These group morphisms are 
ompatible with the map M1(k)→ SolKV(k), whi
h is thereforea morphism of torsors.Proposition 2.6. We have a 
ommuting diagram of torsors

M1(k)
Φ7→µΦ
→ SolKV(k)

Φ7→log ΓΦ↓ ↓Duf

{r ∈ u2
k[[u]]|rev(u) = −u2

24 + u4

1440 ...}
(−1)×−
→֒ u2

k[[u]]where rev(u) is the even part of r(u), and the spa
es in the lower line are viewed as a�nespa
es.2.3. Analyti
 aspe
ts. Let us re
all the original form of the KV 
onje
ture. Let k = R or
C.Conje
ture 2.7. ([KV℄) For any �nite dimensional k-Lie algebra g, there exists a pair ofLie series A(x, y), B(x, y) ∈ f̂2, su
h that:(KV1) x+ y − log eyex = (1− e− ad x)(A(x, y)) + (ead y − 1)(B(x, y));(KV2) A,B give 
onvergent power series at the neighborhood of (0, 0) ∈ g2;(KV3) trg((adx)∂xA+ (ad y)∂yB) = 1

2 trg(
ad x

ead x−1
+ ad y

ead y−1
− ad z

ead z−1
− 1) (identity of an-alyti
 fun
tions on g2 near the origin), where z = log exey and for (x, y) ∈ g2, (∂xA)(x, y) ∈

End(g) is a 7→ d
dt |t=0

A(x+ ta, y), (∂yB)(x, y)(a) = d
dt |t=0

B(x, y + ta).A

ording to [AT℄, there is a unique map κ : TAut2 → tder2, where κ(g) := ℓ−gℓg−1, and
ℓ ∈ Der(̂f2) is the `grading' derivation ℓ(xi) = xi. It is proved in [AT℄ that if µ ∈ SolKV(k),and (A,B) are su
h that −κ(µ−1) = [[A,B]], then (KV1) and (KV3) hold as identitiesbetween formal series for any g, where in (KV3) the formal series 1

2
t

et−1 is repla
ed by rµ(t).



10 A. ALEKSEEV, B. ENRIQUEZ, AND C. TOROSSIANLet ΦKZ(a, b) ∈ exp(̂f2) be the KZ asso
iator, and Φ̃KZ(a, b) := ΦKZ( a
2π i ,

b
2π i ); re
allthat Φ̃KZ is the renormalized holonomy from 0 to 1 of G′(t) = 1

2π i (
a
t + b

t−1 )G(t), and
Φ̃KZ ∈M1(C). Set µKZ := µΦ̃KZ

and uKZ = [[AKZ, BKZ]] := −κ(µ−1
KZ).Let (AR, BR) be de�ned as the real parts of (AKZ, BKZ) (w.r.t. the natural real stru
tureof f̂2). Then:Theorem 2.8. 1) (AR, BR) satis�es (KV1), (KV2) and (KV3) for any �nite dimensionalLie algebra g and is therefore a universal solution of the KV 
onje
ture.2) For any s ∈ R, (As, Bs) := (AR +s(log(exey)−x), BR +s(log(exey)−y)) is a universalsolution of the KV 
onje
ture.3) When s = −1/4, we have (As(x, y), Bs(x, y)) = (Bs(−y,−x), As(−y,−x)).Of 
ourse, the main new result here is the analyti
ity statement (KV2).2.4. Organization of the proofs. We 
onstru
t the isomorphisms µ̃O

Φ and µO
Φ in Se
tion3. In Se
tion 4, we prove the identity relating µO and µO(i) . We then prove Theorem 2.1and Proposition 2.2 in Se
tion 5. In Se
tion 6, we prove Proposition 2.3, Theorem 2.5 andProposition 2.6. Se
tion 7 is devoted to a dire
t proof of the properties of αf . In Se
tion 8,we 
ompute the Ja
obians of µO

Φ and αO
f and in Se
tion 9, we prove the analyti
 Theorem2.8. Appendix A is devoted to results on 
entralizers in tn and PBn(k).3. Asso
iators and isomorphisms of free groups3.1. The 
ategories PaB,PaCD. In [B℄, Bar-Natan introdu
ed the 
ategory PaB ofparenthesized braids. Its set of obje
ts is the set of pairs O = (n, P ), where n in an in-teger ≥ 0 and P is a parenthesization of the word •...• (n letters); alternatively, P is aplanar binary tree with n leaves (we will set |O| = n). The obje
t with n = 0 is denoted 1.The morphisms are de�ned by PaB(O,O′) = ∅ if |O| 6= |O′|, and = Bn if |O| = |O′| = n;the 
omposition is then de�ned using the produ
t in Bn.

PaB is a braided monoidal 
ategory (see e.g. [CE℄), where the tensor produ
t of obje
ts is
(n, P )⊗(n′, P ′) := (n+n′, P ∗P ′) (where P ∗P ′ is the 
on
atenation of parenthesized words,e.g. for P = •• and P ′ = (••)•, P ∗ P ′ = (••)((••)•)). The tensor produ
t of morphisms
PaB(O1, O

′
1) × PaB(O2, O

′
2) → PaB(O1 ⊗ O2, O

′
1 ⊗ O

′
2) is indu
ed by the juxtapositionof braids B|O1|×B|O2| → B|O1|+|O2| (the group morphism (σi, e) 7→ σi, (e, σj) 7→ σj+|O1|).The braiding βO,O′ ∈ PaB(O ⊗ O′, O′ ⊗ O) is the braid σn,n′ ∈ Bn+n′ where the n �rststrands are globally ex
hanged with the n′ last strands (see Figure 2); we have σn,n′ =

(σn...σ1)(σn+1...σ2)...(σn+n′−1...σn′) (where n = |O|, n′ = |O′|). Finally, the asso
iativity
onstraint aO,O′,O′′ ∈ PaB((O ⊗ O′) ⊗ O′′, O ⊗ (O′ ⊗ O′′)) 
orresponds to the trivial braid
e ∈ B|O|+|O′|+|O′′|.

2

1

3

2

4

3

2,3
σ

σ

σ

σ

σ

σ

σ

Figure 2.



DRINFELD ASSOCIATORS AND SOLUTIONS OF THE KASHIWARA�VERGNE EQUATIONS 11Moreover, the pair (PaB, •) is universal for pairs (C,M) of a braided monoidal 
ategoryand an obje
t, i.e., for ea
h su
h pair, there exists a unique tensor fun
tor PaB→ C taking
• to M .Bar-Natan introdu
ed another 
ategory PaCD, whi
h we will des
ribe as follows. Its setof obje
ts is the same as that of PaB, and PaB(O,O′) = ∅ if |O| 6= |O′|, = exp(̂tn) ⋊ Sn if
|O| = |O′| = n. We de�ne the tensor produ
t as above at the level of obje
ts, and by thejuxtaposition map (exp t̂n ⋊ Sn)× (exp t̂n ⋊ Sn)→ exp t̂n+n′ ⋊ Sn+n′ (the group morphismindu
ed by ((tij , 1), 1) 7→ tij , ((1, si), 1) 7→ si, (1, (tij , 1)) 7→ tn+i,n+j , (1, (1, si)) 7→ sn+i) atthe level of morphisms.Any Φ ∈ M1(k) gives rise to a stru
ture of braided monoidal 
ategory on PaCD (andtherefore to a tensor fun
tor PaB → PaCD, whi
h is the identity at the level of obje
ts)as follows: βO,O′ = e

Pn
i=1

Pn+n′

j=n+1 tij/2sn,n′ , where n = |O|, n′ = |O′|, and sn,n′ ∈ Sn+n′is given by sn,n′(i) = n′ + i for i ∈ [n], sn,n′(n + i) = i for i ∈ [n′], and aO,O′,O′′ =

Φ(t12, t23)
1...n,n+1...n+n′,n+n′+1...n+n′+n′′ for n = |O|, n′ = |O′|, n′′ = |O′′|.3.2. Morphisms Bn → exp(̂tn) ⋊ Sn, PBn → exp(̂tn). Fix Φ ∈ M1(k). It gives rise to afun
tor FΦ : PaB → PaCD, so for any n ≥ 1 and any O ∈ Ob(PaB), |O| = n, we get agroup morphism

FΦ(O) = µ̃O : Bn ≃ PaB(O)→ PaCD(O) = exp(̂tn) ⋊ Sn,su
h that Bn
µ̃O
→ exp(̂tn) ⋊ Sn

ց ւ
Sn


ommutes. It follows that µ̃O restri
ts to a morphism
µ̃O : PBn → exp(̂tn).Let us show that the various µ̃O are are all 
onjugated to ea
h other. Let canO,O′ ∈

PaB(O,O′) 
orrespond to e ∈ Bn. Then canO′,O′′ ◦ canO,O′ = canO,O′′ . Moreover, if wedenote by σO : Bn → PaB(O) the 
anoni
al identi�
ation, then σO′(b) = canO,O′ ◦σO(b) ◦
can−1

O,O′ . Let us set ΦO,O′ := FΦ(canO,O′). Then:1) ΦO,O′ ∈ exp(̂tn), ΦO′,O′′ΦO,O′ = ΦO,O′ ;2) µ̃O′(b) = ΦO,O′ µ̃O(b)Φ−1
O,O′ .If O = •(...(••)) is the `right parenthesization', the expli
it formula for µ̃O is

µ̃O(σi) = Φi,i+1,i+2...neti,i+1/2si(Φ
i,i+1,i+2...n)−1, i = 0, ..., n− 1.The morphisms µ̃O extend to isomorphisms between prounipotent 
ompletions as follows.The prounipotent 
ompletion of Bn relative to Bn → Sn will be denoted Bn(k, Sn); it may be
onstru
ted as follows: Bn a
ts by automorphisms of PBn, hen
e of PBn(k); Bn(k, Sn) �tsin an exa
t sequen
e 1 → PBn(k) → Bn(k, Sn) → Sn → 1 and identi�es with the quotientof the semidire
t produ
t PBn(k)⋊ Bn by the image of the morphism PBn → PBn(k)⋊ Bn,

g 7→ (g−1, g) (whi
h is a normal subgroup). Then the morphisms µ̃O give rise to isomorphisms
PBn(k)

∼
→ exp(̂tn)

↓ ↓

Bn(k, Sn)
∼
→ exp(̂tn) ⋊ SnWhen Φ is the KZ asso
iator (with 
oupling 
onstant 2π i), these isomorphisms are givenby Sullivan's theory of minimal models applied to the 
on�guration spa
e of n points inthe 
omplex plane (whi
h 
omputes all the rational homotopy groups of a simply-
onne
tedKaehler manifold, but only the Mal
ev 
ompletion of its fundamental group in the non-simply-
onne
ted 
ase, when
e the name `1-formality').



12 A. ALEKSEEV, B. ENRIQUEZ, AND C. TOROSSIAN3.3. Restri
tion to free groups. Renumber xij , i < j ∈ {0, ..., n} and tij , i 6= j ∈
{0, ..., n} the generators for PBn+1 and tn+1. Re
all that PBn+1 
ontains the free groupwith n generators Fn = 〈x01, ..., x0,n〉 as a normal subgroup. Similarly, tn+1 
ontains thefree Lie algebra with n generators fn = Lie(t01, ..., t0,n). For 
oheren
e of notation with theprevious se
tions, we will set Xi := x0i, xi := t0i.Proposition 3.1. For any O ∈ Ob(PaB) with |O| = n+ 1, the morphism µ̃O restri
ts to amorphism µO : Fn → exp(̂fn), whi
h extends to an isomorphism µO : Fn(k)→ exp(̂fn). The
omposition of µO with the isomorphism exp(̂fn) → Fn(k), exp(xi) 7→ Xi, is a tangentialautomorphism of exp(̂fn), i.e., an element of TAutn.Proof. Let us �rst treat the 
ase of µn := µ•(...(••)). As x0i = (σi−2...σ0)

−1σ2
i−1(σi−2...σ0),we have µn(x0i) = µn(σi−2...σ0)

−1Φi−1,i,i+1...n ·eti−1,i ·(Φi−1,i,i+1...n)−1µn(σi−2...σ0). Thereexists yi ∈ t̂n+1 su
h that µn(σi−2...σ0) = eyisi−2...s0, so for some ỹi ∈ t̂n+1,
(Φi−1,i,i+1...n)−1µn(σi−2...σ0) = si−2...s0e

ỹi.Then µn(x0i) = e−ỹi(si−2...s0)
−1eti−1,isi−2...s0e

ỹi = e−ỹiet0ieỹi . As the a
tion of t̂n+1 on f̂nis by tangential automorphisms, we have e−ỹiet0ieỹi = eziet0ie−zi for some zi ∈ f̂n. So µn ◦
(et0i 7→ x0i) ∈ TAutn. The general 
ase follows from the identity µO′(b) = ΦO,O′µO(b)Φ−1

O,O′and the fa
t that for any Ψ ∈ exp(̂tn+1), x 7→ ΨxΨ−1 indu
es a tangential automorphism of
exp(̂fn). �Proposition 3.2. If moreover O = • ⊗ Ō, where Ō ∈ Ob(PaB) has length n, then
µO(X1...Xn) = ex1+...+xn.Proof. The map PB2 → PBn+1, p 7→ p0, g1...n takes x01 to x01...x0n = X1...Xn. Similarlyto (9), one proves that the diagram

PB2
p7→p0, g1...n

→ PBn+1

µ̃••↓ ↓µ̃•⊗Ō

exp(̂t2)
x 7→x0,1...n

→ exp(̂tn+1)
ommutes. �The various isomorphisms µO are related by the identities(7) µO′ = Ad(ΦO,O′) ◦ µO;the automorphisms Ad(ΦO,O′) are no longer ne
essarily inner.4. The identity µO(i) = µ1,2,...,ii+1,...,n
O ◦ µi,i+1

•(••)Let O ∈ Ob(PaB) be a parenthesized word of length n; its letters are numbered 0, ..., n−1.Let i ∈ {1, ..., n− 1}, let O(i) be the obje
t obtained by repla
ing the letter • numbered i by
(••) (e.g., if O = •(••), then O(1) = •((••)•)). The purpose of this se
tion is to show theidentity

µO(i) = µ1,2,...,ii+1,...,n
O ◦ µi,i+1

•(••).4.1. Free magmas and semigroups. Re
all that a magma is a triple (M,M×M →M, e ∈
M) satisfying e×m 7→ m and m× e 7→ m. A semigroup is a magma, where M ×M → Mis asso
iative.Let X be a �nite set. Let MgX be the free magma generated by X and SgX the semigroupgenerated by X .The assignments X 7→ SgX , X 7→ MgX are fun
torial and we have a natural
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ommutative diagram
MgX → SgX

↓ ↓
Mg{•} → Sg{•} = NThis diagram is Cartesian, so MgX 
an be identi�ed with a �bered produ
t. Expli
itly,we have SgX = ⊔n≥0X

n, Mg{•} = ⊔n≥0{parenthesizations of the word •...• of length n} =

⊔n≥0{rooted planar binary trees with n leaves}, MgX = ⊔n≥0{parenthesized words of length
n in the alphabet X}.We denote by w : MgX → SgX (word), P : MgX → Mg{•} (parenthesization) the naturalmaps; the various maps to N are denoted by x 7→ |x| (length).Note that Sn a
ts on Xn. For w,w′ ∈ SgX , with |w| = |w′| = n, we then set Sw,w′ =
{σ ∈ Sn|σ · w = w′}.4.2. A braided monoidal 
ategory PaBX . We denote by BMC the `
ategory' of braidedmonoidal 
ategories (b.m.
.), where morphisms are the tensor fun
tors.We de�ne a fun
tor Sets→ BMC, X 7→ PaBX , adjoint to the `obje
ts' fun
tor BMC →
Sets, C 7→ ObC. This means that for any set X and b.m.
. C, we have a natural bije
-tion MorSets(X,ObC) ≃ MorBMC(PaBX , C). More pre
isely, we have an inje
tion X ⊂
ObPaBX , and for any b.m.
. C and any map X → ObC, there is atta
hed a tensor fun
tor
PaBX → C, su
h that ObPaBX → ObC extends X → ObC. When X = {•}, PaBXidenti�es with Bar-Natan's PaB.We now 
onstru
t PaBX . We set Ob(PaBX) := MgX . For O,O′ ∈ MgX , we set
PaBX(O,O′) = ∅ if |O| 6= |O′|, and = Bn×πSw(O),w(O′) if |O| = |O′| = n (π : Bn → Sn isthe 
anoni
al proje
tion). So PaBX(O,O′) ⊂ Bn; sin
e Sw,w′Sw′,w′′ ⊂ Sw,w′′ , the produ
tin Bn restri
ts to a map PaBX(O,O′) ×PaBX(O′, O′′)→ PaBX(O,O′′), whi
h we de�neas the 
omposition in PaBX .The tensor produ
t is de�ned at the level of obje
ts by the produ
t in MgX , and at thelevel of morphisms is indu
ed by the juxtaposition map Bn×Bm → Bn+m.We now 
onstru
t the braiding and asso
iativity 
onstraints. For O,O′, O′′ ∈ MgX ,
aO,O′,O′′ ∈ PaBX((O ⊗ O′) ⊗ O′′, O ⊗ (O′ ⊗ O′′)) is de�ned as the identity element in
Bn+n′+n′′ (n = |O|, n′ = |O′|, n′′ = |O′′|).Then βO,O′ ∈ PaBX(O ⊗ O′, O′ ⊗ O) ≃ B|O|+|O′| 
orresponds to σn,n′ (one 
he
ks thatthe image sn,n′ ∈ Sn+n′ of σn,n′ belongs to the desired Sw,w′).One 
he
ks that PaBX , equipped with this stru
ture, is a b.m.
., and that X 7→ PaBXis adjoint to the `obje
ts' fun
tor.4.3. The 
ategory PaCDX . We �rst de�ne a tensor 
ategory FX as follows. Ob(FX) :=
SgX , and for w,w′ ∈ SgX , FX(w,w′) = ∅ if |w| 6= |w′|, and = (exp(̂tn) ⋊ Sn) ×π Sw,w′ else,where π : exp(̂tn) ⋊ Sn → Sn is the 
anoni
al proje
tion. The 
omposition is de�ned asabove, using the produ
t in exp(̂tn) ⋊ Sn, again using Sw,w′Sw′,w′′ ⊂ Sw,w′′ .The tensor produ
t is de�ned, at the level of obje
ts, by the semigroup law, and at the levelof morphisms using the juxtaposition (exp(̂tn)⋊Sn)×(exp(̂tn′)⋊Sn′)→ exp(̂tn+n′)⋊Sn+n′ .Let Φ ∈M1(k). For X = {•}, SgX = N (we then have n⊗m = n+m). For n, n′, n′′ ∈ N,we then set

an,n′,n′′ := Φ1...n,n+1...n+n′,n+n′+1...n+n′+n′′

∈ exp(̂tn+n′+n′′) ∈ F{•}(n⊗ n
′ ⊗ n′′);

sn,n′ ∈ Sn+n′ is the blo
k permutation i 7→ n′ + i (i ∈ [n]), n+ i 7→ i (i ∈ [n′]) and
βn,n′ := (et12/2)1...n,n+1...n+n′

sn,n′ ∈ exp(̂tn+n′) ⋊ Sn+n′ = F{•}(n⊗ n
′, n′ ⊗ n).We note that if X is arbitrary and w,w′, w′′ ∈ SgX , then a|w|,|w′|,|w′′| ∈ FX(w ⊗ w′ ⊗ w′′)and β|w|,|w′| ∈ FX(w ⊗ w′, w′ ⊗ w).
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ategory PaCDX by Ob(PaCDX) := MgX , and for O,O′ ∈ MgX , weset PaCDX(O,O′) := FX(w(O), w(O′)). The tensor produ
t is de�ned at the level ofobje
ts as the produ
t in Mg2; as w : Mg2 → Sg2 is 
ompatible with produ
ts, a tensorprodu
t is de�ned at the level of morphisms by PaCDX(O1, O2) ⊗ PaCDX(O′
1, O

′
2) =

FX(w(O1), w(O2))⊗FX(w(O′
1), w(O′

2))→ FX(w(O1)⊗w(O′
1), w(O2)⊗w(O′

2)) = FX(w(O1⊗
O′

1), w(O2 ⊗O′
2)) = PaCDX(O1 ⊗O′

1, O2 ⊗O′
2).Let Φ ∈ M1(k). Then Φ gives rise to a b.m.
. stru
ture on PaCDX by aO,O′,O′′ :=

a|O|,|O′|,|O′′| ∈ FX(w(O) ⊗ w(O′) ⊗ w(O′′)) = PaCDX((O ⊗ O′) ⊗ O′′, O ⊗ (O′ ⊗ O′′))and βO,O′ := β|O|,|O′| ∈ FX(w(O) ⊗ w(O′), w(O′) ⊗ w(O)) = PaCDX(O ⊗ O′, O′ ⊗ O) for
O,O′, O′′ ∈MgX .We denote by PaCD

Φ
X the resulting b.m.
.4.4. Tensor fun
tors. When X = X1 := {•}, PaBX 
oin
ides with PaB; we also denote

MgX , PaCD
Φ
X by Mg, PaCD

Φ. For X = X2 := {•, ◦}, we denote PaBX , PaCD
Φ
X , MgX ,

SgX by PaB2, PaCD
Φ
2 , Mg2, Sg2.We de�ne PaB2 → PaB as the tensor fun
tor indu
ed by the map X2 → Mg1, • 7→ •,

◦ 7→ ••.We denote by PaB → PaCD
Φ the tensor fun
tor indu
ed by the 
anoni
al inje
tion

X1 → Ob(PaCD
Φ) = Mg1.Similarly, we denote by PaB2 → PaCD

Φ
2 the tensor fun
tor indu
ed by the 
anoni
alinje
tion X2 → Ob(PaCD

Φ
2 ) = Mg2.Let us now 
onstru
t a fun
tor FX2 → FX1 . At the level of obje
ts, this is the semigroupmorphism Sg2 → Sg1 indu
ed by the map l : X2 → Sg1 ≃ N, w 7→ w̃ given by • 7→ 1 and ◦ 7→

2. So for w = (w1, ..., wn) ∈ ⊔n≥0X
n
2 , w̃ =

∑n
i=1 l(wi), where l(•) = 1 and l(••) = 2. Let usnow de�ne the fun
tor at the level of morphisms, i.e. the maps FX2(w,w

′)→ FX1 (w̃, w̃
′). As

FX2(w,w
′) = ∅ unless (card{i|wi = •}, card{i|wi = ◦}) = (card{i|w′

i = •}, card{i|w′
i = ◦}),we will assume that these pairs of integers are equal (in parti
ular |w| = |w′|); we denotethis pair by (n1, n2). Note that |w| = |w′| = n1 + n2, while w̃ = w̃′ = n1 + 2n2.There is a unique non-de
reasing map φw : [n1 + 2n2] → [n1 + n2], su
h that i has onepreimage by φw if wi = • and two preimages if wi = ◦; for example, if w = (•, •, ◦, ◦, •), then

φw : [7]→ [5] is (1, ..., 7) 7→ (1, 2, 3, 3, 4, 4, 5).Moreover, for any σ ∈ Sn1+n2 , there is a unique σw ∈ Sn1+2n2 su
h that: (a) σ◦φw = φw′ ◦
σw, where w′ = σ ·w, so that σw restri
ts to bije
tions φ−1

w (i)→ φ−1
w′ (i); (b) these bije
tionsare in
reasing (this 
ondition is nonempty only if cardφ−1

w (i) > 1). The map σ 7→ σ′ is agroup morphism Sn1+n2 → Sn1+2n2 (it maps a permutation to a blo
k permutation); forexample, if w = (◦, •, •), this map is S3 → S4, (
1 2 3
2 1 3

)
7→

(
1 2 3 4
3 1 2 4

), (
1 2 3
1 3 2

)
7→

(
1 2 3 4
1 2 4 3

).The morphisms tn1+n2 → tn1+2n2 , x 7→ xφw and Sn1+n2 → Sn1+2n2 , σ 7→ σw are 
om-patible, so we obtain a group morphism exp(̂tn1+n2) ⋊ Sn1+n2 → exp(̂tn1+2n2) ⋊ Sn1+2n2 .We then de�ne FX2 (w,w
′) → FX1 (w̃, w̃

′) as the restri
tion of this group morphism. One
he
ks that this map is 
ompatible with tensor produ
ts, so we have de�ned a tensor fun
tor
FX2 → FX1 .The tensor fun
tor FX2 → FX1 extends to a tensor fun
tor PaCD

Φ
2 → PaCD

Φ as follows.There is a unique magma morphism Mg2 → Mg1, O 7→ Õ, extending the map X2 → Mg1,
• 7→ •, ◦ 7→ ••. It is su
h that the diagram

Mg2 → Mg1

↓ ↓
Sg2 → Sg1
ommutes. The fun
tor PaCD

Φ
2 → PaCD

Φ is de�ned, at the level of obje
ts, as the map
Mg2 → Mg1 and at the level of morphisms by PaCD

Φ
2 (O,O′) = FX2(w(O), w(O′)) →

FX1(w̃(O), w̃(O′)) = FX1(w(Õ), w(Õ′)) = PaCD(O,O′).
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iativity 
onstraints to their analogues.Namely:(a) it takes βO,O′ ∈ PaCD2(O ⊗O′, O′ ⊗O) to βÕ,Õ′ ∈ PaCD(Õ ⊗ Õ′, Õ′ ⊗ Õ).(b) it takes aO,O′,O′′ ∈ PaCD2((O⊗O′)⊗O′′, O⊗ (O′⊗O′′)) to aÕ,Õ′,Õ′′ ∈ PaCD((Õ⊗

Õ′)⊗ Õ′′, Õ ⊗ (Õ′ ⊗ Õ′′)).To prove (a), let w,w′ = w(O), w(O′), (card{i|wi = •}, card{i|wi = ◦}) = (n1, n2),
(card{i|w′

i = •}, card{i|w′
i = ◦}) = (n′

1, n
′
2). Then βO,O′ = βn1+n2,n′

1+n′
2
∈ FX2(w⊗w

′, w′ ⊗
w). Similarly, βÕ,Õ′ = βn1+2n2,n′

1+2n′
2
∈ FX1(w̃ ⊗ w̃

′, w̃′ ⊗ w̃).Now note that:
((t12)

1...n,n+1...n+n′

)φw⊗w′ = (t12)
1...n1+2n2,n1+2n2+1...n1+2n2+n′

1+2n′
2 ,and

(sn,n′)w⊗w′

= sn1+2n2,n′
1+2n′

2
.So the map FX2(w ⊗w

′, w′ ⊗w)→ FX1(w̃ ⊗ w̃
′, w̃′ ⊗ w̃) takes βn,n′ to βn1+2n2,n′

1+2n′
2
. Theproof of (b) is similar.Then the diagram of fun
tors

PaB2 → PaB

↓ ↓

PaCD
Φ
2 → PaCD

Φ
ommutes by universal properties (the two 
omposed fun
tors PaB2 → PaCD
Φ 
oin
idesas their restri
tions to the elements of X2 ⊂ Ob(PaB2) do).Remark 4.1. More generally, to any map X → Mg1, one asso
iates a tensor fun
tor

PaCD
Φ
X → PaCD

Φ, de�ned at the level of obje
ts by the extension of this map to amorphism MgX → Mg1 and at the level of morphisms by suitable iterations of 
obra
kets,and it is su
h that
PaBX → PaB

↓ ↓
PaCDX → PaCD
ommutes.4.5. Relation between braid groups representations. Let n ≥ 1, let i ∈ [n], let wi =

(•, ..., •, ◦, •, ..., •) ∈ Sg2 be given by wi = ◦ and wj = • for j ∈ [n] − {i}. Let O ∈ Mg2 besu
h that w(O) = wi. We have proved that the diagram
PaB2(O) → PaB(Õ)
↓ ↓

PaCD2(O) → PaCD(Õ)
ommutes.We have isomorphisms:
PaB2(O) ≃ Bn×πSn−1, where Sn−1 ⊂ Sn identi�es with {σ ∈ Sn|σ(i) = i};
PaCD2(O) ≃ (exp(̂tn) ⋊ Sn)×π Sn−1;
PaB(Õ) ≃ Bn+1;
PaCD(Õ) ≃ exp(̂tn+1) ⋊ Sn+1.For O ∈ MgX1

, |O| = n, the morphism PaB(O)→ PaCD(O) is a morphism µO : Bn →

exp(̂tn) ⋊ Sn. Note that if OX ∈ MgX and O := P (OX), then we have a 
ommutativediagram
PaBX(OX) → PaCDX(OX)

↓ ↓

Bn
µO
→ exp(̂tn) ⋊ Snwhere the verti
al maps are inje
tive.



16 A. ALEKSEEV, B. ENRIQUEZ, AND C. TOROSSIANThe above 
ommutative diagram therefore inserts in a diagram(8) Bn ← Bn×πSn−1
1,2,...,ĩi+1,...,n

→ Bn+1

µO↓ ↓ ↓µ
O(i)

exp(̂tn) ⋊ Sn ← (exp(̂tn) ⋊ Sn)×π Sn−1
1,2,...,ii+1,...,n

→ exp(̂tn+1) ⋊ Sn+1Restri
ting to pure braid groups, we obtain the 
ommutative diagram(9) PBn
1,2,...,ĩi+1,...,n

→ PBn+1

µO↓ ↓µ
O(i)

exp(̂tn)
1,2,...,ii+1,i+2,...,n+1

→ exp(̂tn+1)4.6. Relation between µO and µO(i) . Let O ∈ Ob(PaB), |O| = n. We index letters in Oby 0, ..., n− 1, �x an index i 6= 0 and 
onstru
t O(i) by doubling inside O the • with index i.
O gives rise to a morphism µ̃O : Bn → exp(̂tn) ⋊ Sn, whi
h restri
ts to µO : Fn−1 →

exp(̂fn−1). Similarly, µ̃O(i) : Bn+1 → exp(̂tn+1) ⋊ Sn+1 restri
ts to µO(i) : Fn → exp(̂fn).We want to prove that(10) µO(i) = µ1,2,...,ii+1,...,n
O ◦ µi,i+1

•(••).We �rst show that there are uniquely determined elements g1, ..., gn−1 ∈ exp(̂fn−1) and
g, h ∈ exp(̂f2) su
h that:(a) µO = [[g1(x1, ..., xn−1), ..., gn−1(x1, ..., xn−1)]], log gi(x1, ..., xn−1) = − 1

2 (x1 + ... +

xi−1) +O(x2), and8(b) µ•(••) = [[g(x1, x2), h(x1, x2)]], log g(x1, x2) = O(x2), log h(x1, x2) = − 1
2x1 +O(x2).Let us prove the �rst statement (it a
tually 
ontains the se
ond statement as a parti
-ular 
ase). The elements gi(x1, ..., xn−1) are uniquely determined by the equality µO =

[[g1, ..., gn−1]], together with the 
ondition that the 
oe�
ient of xi in the expansion of log givanishes. We should then prove that log gi = − 1
2 (x1 + ...+ xi−1) +O(x2). We have

µ̃O(σj) = eaj · etj−1,j/2sj · e
−aj ,where aj ∈ t̂n has valuation ≥ 2 (we write this as aj ∈ O(t2)), and

µO(Xi) = µ̃O(σ1)
−1...µ̃O(σi−1)

−1µ̃O(σi)
2µ̃O(σi−1)...µ̃O(σ1).Now

µ̃O(σi−1)...µ̃O(σ1) = si−1...s1e
1
2 (x1+...+xi−1)+O(t2)and µ̃O(σ2

i ) = eaieti−1,ie−ai . It follows that
µO(Xi) = e−

1
2 (x1+...+xi−1)+O(t2)eãi · exi · (same)−1,where ãi = s1...si−1 ·ai ·si−1...s1 ∈ O(t2), so µO(Xi) = e−

1
2 (x1+...+xi−1)+O(t2) ·exi ·(same)−1,whi
h implies that gi has the announ
ed form.To prove (10), we need to prove the equality

µO(i) = [[g1(x1, ..., xi + xi+1, ..., xn), ..., gi(x1, ..., xi + xi+1, ..., xn)g(xi, xi+1),(11)
gi(x1, ..., xi + xi+1, ..., xn)h(xi, xi+1), ..., gn−1(x1, ..., xi + xi+1, ..., xn)]].(9) implies that the diagram

Fn−1 → Fn

µO↓ ↓µ
O(i)

exp(̂fn−1) → exp(̂fn)8O(x2) means an element of f̂n−1 of valuation ≥ 2.
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ommutes, where the upper morphism takes Xj (j ∈ [n−1]) to: Xj if j < i, XiXi+1 if j = i,
Xj+1 if j > i+ 1 and the lower morphism is similarly de�ned (repla
ing produ
ts by sumsand Xk's by xk's). Spe
ializing to the generators Xj (j 6= i) of Fn−1, this yields

µO(i)(Xj) = g0,1,...,ii+1,...,n
j · exj · (same)−1for j < i and

µO(i)(Xj) = g0,1,...,ii+1,...,n
j−1 · exj · (same)−1for j > i+ 1, whi
h implies that (11) holds when applied to the generators Xj , j 6= i, i+ 1.We now prove that (11) also holds when applied to Xi and Xi+1.The morphism Xi ∈ Bn = PaB(O,O) 
an be de
omposed as

O
(σi−2...σ0)

−1

→ (O1 ⊗ (••))⊗O2

σ2
i−1
→ (O1 ⊗ (••))⊗O2

σi−2...σ0
→ O.Here the braid group elements indi
ate the morphisms. Let γ ∈ exp(̂tn) ⋊ Sn be the imageof the morphism O

(σi−2...σ0)
−1

→ (O1⊗ (••))⊗O2 under PaB→ PaCD; its image in Sn is thepermutation s0...si−2, i.e., (0, ..., n− 1) 7→ (i− 1, 0, 1, ..., i− 2, i, i+ 1, ..., n− 1). The imageof (O1 ⊗ (••))⊗O2

σ2
i−1
→ (O1 ⊗ (••))⊗O2 is eti−1,i , therefore the image of Xi is

µO(Xi) = γeti−1,iγ−1.We have γ = γ0s0...si−2, where γ0 ∈ exp(̂tn). As s0...si−2 · ti−1,i = xi, we have
µO(Xi) = γ0e

xiγ−1
0 .As this image is also gi(x1, ..., xn−1) · exi · (same)−1, we derive from this that g−1

i γ0 
om-mutes with xi, hen
e by Proposition A.1 has the form eλxiα0i,1,2,...,i−1,i+1,...,n−1, where
α ∈ exp(̂tn−1).Sin
e µO(σj) = sje

tj,j+1/2, we get log γ0 = − 1
2 (x1 + ...+xi−1)+O(x2). Comparing linearterms in xi, we get λ = 0.Let us now 
ompute µO(i)(Xi). The morphism Xi ∈ Bn+1 = PaB(O(i), O(i)) 
an bede
omposed as

O(i) (σi−2...σ0)
−1

→ (O1 ⊗ (•(••)))⊗O2

σ2
i−1
→ (O1 ⊗ (•(••)))⊗O2

σi−2...σ0
→ O(i)(here σ2

i−1 involves the two �rst • of •(••)). The morphism O(i) (σi−2...σ0)
−1

→ (O1⊗ (•(••)))⊗

O2 is obtained from O(i) (σi−2...σ0)
−1

→ (O1 ⊗ (••)) ⊗ O2 by the operation of doubling ofthe ith strand, so its image is γ0,1,2,...,ii+1,...,n = γ0,1,2,...,ii+1,...,n
0 (s0...si−2). The image of

•(••)
σ2
1→ •(••) is g(x1, x2) · ex1 · (same)−1, so the image of

(O1 ⊗ (•(••)))⊗O2

σ2
i−1
→ (O1 ⊗ (•(••)))⊗O2is g(ti−1,i, ti−1,i+1)e

ti−1,i(same)−1. It follows that
µO(i)(Xi) = γ0,1,2,...,ii+1,...,ng(ti−1,i, ti−1,i+1)·e

ti−1,i ·(same)−1 = γ0,1,2,...,ii+1,...,n
0 g(xi, xi+1)·e

xi ·(same)−1.Now we 
laim that
γ0,1,2,...,ii+1,...,n
0 g(xi, xi+1)e

xi(same)−1 = g0,1,2,...,ii+1,...,n
i g(xi, xi+1) · e

xi · (same)−1.Indeed,
(g−1

i γ0)
0,1,2,...,ii+1,...,ng(xi, xi+1) · e

xi · (same)−1

= (α0i,1,2,...,i−1,i+1,...,n−1)0,1,2,...,ii+1,...,ng(xi, xi+1) · e
xi · (same)−1

= α0ii+1,2,3,...,i−1,i+2,...,g(xi, xi+1) · e
xi · (same)−1.Now xi and xi+1 
ommute with any α0ii+1,..., so this is g(xi, xi+1) · exi · (same)−1.
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µO(i)(Xi) = g0,1,2,...,ii+1,...,n

i g(xi, xi+1) · e
xi · (same)−1.The same argument shows that

µO(i)(Xi+1) = g0,1,2,...,ii+1,...,n
i h(xi, xi+1) · e

xi+1 · (same)−1,as wanted. 5. The map M1(k)→ SolKV(k)We show that for Φ ∈M1(k), µΦ ∈ SolKV(k). By 
onstru
tion of µΦ, we have µΦ(X) ∼
ex, µΦ(Y ) ∼ ey, so µΦ ∈ TAut2.5.1. Proof of Ad Φ(t12, t23) ◦ µ

12,3
Φ ◦ µ1,2

Φ = µ1,23
Φ ◦ µ2,3

Φ . We �rst prove:Proposition 5.1. 1) µ•(••) = µΦ.2) Φ•((••)•),•(•(••)) = Φ(t12, t23).Proof. Let us prove 1). x01 ∈ B3 = PaB(•(••)) 
orresponds to a•,•,• ◦ (β2
•,•⊗ id•)◦a−1

•,•,•.The image of this element in exp(̂t3) ⋊ S3 is µ•(••)(X) = Φ(t01, t12)e
t01Φ(t01, t12)

−1. Sin
e
t01+t12+t02 is 
entral in t3 and sin
e Φ is group-like, this is Φ(t01,−t01−t02)et01Φ(t01,−t01−
t02)

−1 = Φ(x,−x− y)exΦ(x,−x− y)−1 = µΦ(X). Similarly, x02 
orresponds to (id•⊗β•,•)◦
a•,•,• ◦ (β2

•,• ⊗ id•) ◦ a−1
•,•,• ◦ (id•⊗β−1

•,•). The image of this element in exp(̂t3) ⋊ S3 is
µ•(••)(Y )

= et12/2(12)Φ(t01, t12)e
t01Φ(t01, t12)

−1(12)e−t12/2 = et12/2Φ(t02, t12)e
t02Φ(t02, t12)

−1e−t12/2

= e−(t01+t02)/2Φ(t02,−t01 − t02)e
t02Φ(t02,−t01 − t02)

−1e(t01+t02)/2

= e−(x+y)/2Φ(y,−x− y)eyΦ(y,−x− y)−1e(x+y)/2 = µΦ(Y ).So µ•(••) = µΦ.Let us now prove 2). Let O := •((••)•), O′ := •(•(••)). Then canO,O′ = id•⊗a•,•,• ∈
PaB(O,O′), whose image in PaCD(O,O′) = exp(̂t4) ⋊ S4 is Φ(t12, t23) = ΦO,O′ . �We now prove (2). Applying (4) to O = •(••) and i = 1, 2, and using µ•(••) = µΦ, we get

µ•((••)•) = µ12,3
Φ ◦ µ1,2

Φ , µ•(•(••)) = µ1,23
Φ ◦ µ2,3

Φ .Moreover, (7) implies
Ad Φ•((••)•),•(•(••)) ◦ µ•((••)•) = µ•(•(••)).As Φ•((••)•),•(•(••)) = Φ(t12, t23), we get (2).5.2. Proof of µΦ(XY ) = ex+y. We will give three proofs:First proof. We have

µΦ(XY ) = µΦ(X)µΦ(Y )

= Φ(x,−x− y)exΦ(−x− y, x)e−(x+y)/2Φ(y,−x− y)eyΦ(−x− y, x)e(x+y)/2

= Φ(x,−x− y)ex/2Φ(y, x)ey/2Φ(−x− y, x)e(x+y)/2 = ex+y,where the se
ond equality follows from the duality identity and the third and fourth equalitiesboth follow from the hexagon identity.Se
ond proof. Let us set ν := µ−1
Φ . Sin
e µΦ satis�es (2), we have(12) ν2,3 ◦ ν1,23 = ν1,2 ◦ ν12,3 ◦Ad(Φ(t12, t23)).Let us set C(x, y) := ν(x + y), and apply (12) to x + y + z to obtain C(x,C(y, z)) =

C(C(x, y), z). A

ording to [AT℄, this implies C(x, y) = s−1 log(esxesy) for some s ∈ k
×.Che
king degree 1 and 2 terms in ν, we get s = 1.



DRINFELD ASSOCIATORS AND SOLUTIONS OF THE KASHIWARA�VERGNE EQUATIONS 19Third proof. As µ̃••(x01) = et01 , and using Proposition 3.2, we get µ•⊗Ō(X1...Xn) =
µ̃•⊗Ō(X1...Xn) = (et01)0,1...n = ex1+...+xn. This implies µΦ(XY ) = ex+y sin
e µΦ = µ•(••).5.3. Proof that J(µΦ) is a δ-
oboundary (end of proof of Theorem 2.1). Sin
e
J(Ad Φ(t12, t23)) = 0, and J(µ12,3

Φ ) = J(µΦ)12,3, et
., we get by applying J to (2),
Φ(t12, t23) · J(µΦ)12,3 + Φ(t12, t23) ◦ µ

12,3
Φ · J(µΦ)1,2 = J(µΦ)1,23 + µ1,23

Φ · J(µΦ)2,3.Applying the inverse of (2), we get
(µ1,2

Φ )−1◦(µ12,3
Φ )−1·J(µΦ)12,3+(µ1,2

Φ )−1·J(µΦ)1,2 = (µ2,3
Φ )−1◦(µ1,23

Φ )−1·J(µΦ)1,23+(µ2,3
Φ )−1·J(µΦ)2,3,and sin
e a12,3 · t12,3 = (a · t)12,3, et
.,

(µ1,2
Φ )−1 · (µ−1

Φ ·J(µΦ))12,3 +(µ−1
Φ ·J(µΦ))1,2 = (µ2,3

Φ )−1 · (µ−1
Φ ·J(µΦ))1,23 +(µ−1

Φ ·J(µΦ))2,3.Now µ−1
Φ (x+y) = log(exey) implies that (µ1,2

Φ )−1 ·t12,3 = t1̃2,3, and similarly with 1, 23, so
δ̃(µ−1

Φ · J(µΦ)) = 0. So there exists γ ∈ T̂1 with valuation ≥ 2 su
h that µ−1
Φ · J(µΦ) = δ̃(γ).Now µΦ · γ

1̃2 = γ12, and µΦ · γ1 = γ1, µΦ · γ2 = γ2 as µΦ(x) ∼ x, µΦ(y) ∼ y, therefore
µΦ · δ̃(γ) = δ(γ). So J(µΦ) = δ(γ). It follows that for a suitable γ ∈ u2

k[[u]], we have
J(µΦ) = δ(γ) = 〈γ(x+ y)− γ(x)− γ(y)〉.All this ends the 
onstru
tion of the mapM1(k)→ SolKV(k), hen
e the proof of Theorem2.1.5.4. Computation of J(µΦ) (proof of Proposition 2.2). Let U := [[1, A(x, y)]] ∈ TAut2,where

logA(x, y) =
∑

k≥1

αk(adx)k(y) +O(y2)(hereO(y2) means a series of elements with y-degree≥ 2). Then logU = [[0,
∑

k≥1 αk(adx)k(y)+

O(y2)]], and J(U) = j(logU) +O(y2). Now j(logU) = 〈
∑

k≥1 αky(−x)
k +O(y2)〉. So

J(U) = 〈
∑

k≥1

αk(−x)ky〉+O(y2).On the other hand, the hexagon identity implies that µΦ = Inn(Φ(x,−x − y)e−x/2) ◦ µ̄Φ,where µ̄Φ = [[1,Φ(x, y)−1]], and we then have J(µ̄Φ) = J(µΦ).We have log Φ(x, y) = −
∑

k≥1 ζΦ(k + 1)(adx)k(y) +O(y2), therefore
J(µΦ) = J(µ̄Φ) = 〈

∑

k≥1

(−1)kζΦ(k + 1)xky〉+O(y2).As we have J(µΦ) = 〈f(x) + f(y)− f(x+ y)〉 for some series f(x), we get(13)
J(µΦ) = 〈(−1)k ζΦ(k + 1)

k + 1
((x+y)k+1−xk+1−yk+1)〉 = 〈log ΓΦ(x)+log ΓΦ(y)−log ΓΦ(x+y)〉.This proves Proposition 2.2. 6. Group and torsor aspe
ts6.1. Group stru
tures of KV(k) and KRV(k). It is proved in [AT℄ that KRV(k) is agroup, a
ting freely and transitively on SolKV(k).Let us prove that KV(k) is a group. For α ∈ KV(k), let σα := Duf(α), so σα ∈ u

2
k[[u]],and J(α) = δ̃(σα). If α, α′ ∈ KV(k), we have 
learly α′ ◦ α(X) ∼ X , α′ ◦ α(Y ) ∼ Y ,

α′◦α(XY ) = XY . Moreover, J(α′ ◦α) = J(α′)+α′ ·J(α) = δ̃(σα′)+α′ · δ̃(σα) = δ̃(σα +σα′ ),where the last equality follows from α′(X) ∼ X , α′(Y ) ∼ Y , α′(XY ) = XY , whi
h implies
δ̃(α′ · t) = δ̃(t) for t ∈ T̂1. So α′ ◦ α ∈ KV(k). One proves similarly that α−1 ∈ KV(k). Wehave also proved that σα′◦α = σα + σα′ , i.e., Duf : KV(k)→ u2

k[[u]] is a group morphism.
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ture of SolKV(k) (proof of Proposition 2.3). Let us prove that
KV(k) a
ts on SolKV(k). For µ ∈ SolKV(k), let rµ := Duf(µ), so rµ ∈ u2

k[[u]], and J(µ) =
δ(rµ). For µ ∈ SolKV(k), α ∈ KV(k), we have µ◦α(X) ∼ µ(X) ∼ ex, µ◦α(Y ) ∼ µ(Y ) ∼ ey,
µ ◦ α(XY ) = µ(XY ) = ex+y. Moreover, J(µ ◦ α) = J(µ) + µ · J(α) = δ(rµ) + µ · δ̃(σα) =

δ(rµ + σα), where the last equality uses the identity δ(t) = µ · δ̃(t) for t ∈ T̂2, whi
h followsfrom µ(XY ) = ex+y, µ(X) ∼ ex, µ(Y ) ∼ ey. So µ ◦ α ∈ SolKV(k). We have also provedthat rµ◦α = rµ + σα, so Duf : SolKV(k)→ u2
k[[u]] is a morphism of torsors.Let us now prove that the a
tion of KV(k) on SolKV(k) is free and transitive. For

µ, µ′ ∈ SolKV(k), set α := µ−1 ◦ µ′; then α(X) ∼ X , α(Y ) ∼ Y , α(XY ) = XY , and
J(α) = J(µ−1) + µ−1 · J(µ′) = µ−1 · (J(µ′) − J(µ)) as J(µ−1) = −µ−1 · J(µ). Then
J(α) = µ−1 · (δ(rµ′ − rµ)) = δ̃(rµ′ − rµ), where the last equality uses µ−1 · δ(t) = δ̃(t) for
t ∈ T̂1. So α ∈ KV(k).6.3. Compatibilities of morphisms with group stru
tures and a
tions (proof ofTheorem 2.5). We now show that: (a) f 7→ α−1

f is a group morphism GT1(k) → KV(k),(b) g 7→ a−1
g is a group morphism GRT1(k)→ KRV(k), (
) the map Φ 7→ µΦ is 
ompatiblewith the a
tions of these groups.For this, we will show that(14) µf∗Φ = µΦ ◦ αf , µΦ∗g = ag ◦ µΦ.We will 
he
k these identities on the �rst generator (X or x), the proofs in the se
ond 
asebeing similar.The proofs go as follows:
µf∗Φ(X) = (f ∗ Φ)(x,−x− y) · ex · (same)−1

= f(Φ(x,−x− y)exΦ(x,−x− y)−1, e−x−y)Φ(x,−x− y) · ex · (same)−1

= f(µΦ(X), µΦ(Y −1X−1)) · µΦ(X) · (same)−1

= µΦ(f(X,Y −1X−1) ·X · (same)−1) = µΦ ◦ αf (X)and
µΦ∗g(X) = (Φ ∗ g)(x,−x− y) · ex · (same)−1

= Φ(g(x,−x− y)xg(x,−x− y)−1,−x− y)g(x,−x− y) · ex · (same)−1

= Φ(ag(x), ag(−x− y)) · ag(x) · (same)
−1

= ag(Φ(x,−x− y)xΦ(x,−x− y)−1) = ag ◦ µΦ(X).The �rst part of (14) implies the following: (a) if f ∈ GT1(k), then αf ∈ KV(k); (b)
αf1∗f2 = αf2 ◦αf1 ; (
)M1(k)→ SolKV(k) is 
ompatible with the group morphism f 7→ α−1

f .Indeed, using the nonemptinesss ofM1(k) (see [Dr℄) we get αf = µ−1
Φ ◦µf∗Φ, whi
h implies

αf ∈ KV(k) a

ording to Subse
tion 6.2, i.e., (a). Again using the nonemptiness of M1(k),we get αf1∗f2 = µ−1
Φ ◦ µ(f1∗f2)∗Φ = (µ−1

Φ ◦ µf2∗Φ) ◦ (µ−1
f2∗Φ
◦ µf1∗(f2∗Φ)) = αf2 ◦αf1 (where weused (f1 ∗ f2) ∗ Φ = f1 ∗ (f2 ∗ Φ)), whi
h proves (b). (
) is then tautologi
al.Similarly, the se
ond part of (14) implies: (a) if g ∈ GRT1(k), then ag ∈ KRV(k); (b)

ag1∗g2 = ag2 ◦ ag1 ; (
) M1(k)→ SolKV(k) is 
ompatible with the group morphism g 7→ a−1
g .All this proves Theorem 2.5.



DRINFELD ASSOCIATORS AND SOLUTIONS OF THE KASHIWARA�VERGNE EQUATIONS 21It is easy to prove the identities αf1∗f2 = αf2 ◦ αf1 , ag1∗g2 = ag2 ◦ ag1 dire
tly (i.e., notusing the nonemptiness of M1(k)): the veri�
ations on the �rst generators (X and x) are
αf1∗f2(X) = (f1 ∗ f2)(X,Y

−1X−1) ·X · (same)−1

= f1(f2(X,Y
−1X−1)Xf2(X,Y

−1X−1)−1, Y −1X−1)f2(X,Y
−1X−1) ·X · (same)−1

= f1(αf2(X), αf2(Y
−1X−1)) · αf2(X) · (same)−1

= αf2(f1(X,Y
−1X−1) ·X · (same)−1) = αf2 ◦ αf1(X),and

ag1∗g2(x) = (g1 ∗ g2)(x,−x− y) · x · (same)
−1

= g1(g2(x,−x− y)xg2(x,−x− y)
−1,−x− y)g2(x,−x − y) · x · (same)

−1

= g1(ag2(x), ag2(−x− y)) · ag2(x) · (same)
−1

= ag2(g1(x,−x− y)xg1(x,−x− y)
−1) = ag2 ◦ ag1(x).Remark 6.1. The Lie algebra morphism 
orresponding to g 7→ a−1

g is the morphism ν :
grt1 → krv from [AT℄, given by ψ(x, y) 7→ [[ψ(x,−x − y), ψ(y,−x− y)]].6.4. Torsor properties of the Du�o formal series (proof of Proposition 2.6). Wehave already proved that M1(k) → SolKV(k), and SolKV(k)

Duf
→ u2

k[[u]] is a morphism oftorsors. On the other hand, it follows from [E℄ that M1(k)
Φ7→log ΓΦ
→ {r ∈ u2

k[[u]]|rev(u) =

−u2

24 + ...} is a morphism of torsors and from Proposition 2.2 that the diagram of Proposition2.6) 
ommutes.For later use, let us make the group morphism GT1(k)→ u3
k[[u2]] underlying Φ 7→ log ΓΦexpli
it.Lemma 6.2. For f ∈ GT1(k), there is a unique Γf ∈ exp(u3
k[[u2]]) su
h that

[log f(ea, eb)] = 1−
Γf(−a)Γf (−b)

Γf (−a− b)
;here we use the isomorphism f̂′2/̂f

′′
2 ≃ abk[[a, b]] given by (
lass of (ada)k(ad b)l([a, b])) ↔

ak+1b
l+1. The map GT1(k)→ u3

k[[u2]], f 7→ log Γf is a group morphism and Γf∗Φ = ΓfΓΦfor any f ∈ GT1(k), Φ ∈M1(k).Proof. The map f2 → k[a, b], ψ 7→ (b∂bψ)ab also indu
es an isomorphism f̂′2/̂f
′′
2 ≃ abk[[a, b]],whi
h takes the 
lass (ad a)k(ad b)l([a, b]) to (−1)k+l+1ak+1b

l+1. So for ψ ∈ f̂′2, we have
(b∂bψ)ab(ā, b̄) = −[ψ](−ā,−b̄) (where ψ 7→ [ψ] is the map f̂′2 → f̂′2/̂f

′′
2 ≃ abk[[a, b]]).So (6) may be rewritten

[log Φ](a, b) = 1−
ΓΦ(−a− b)

ΓΦ(−a)ΓΦ(−b)
.If now ψ, α ∈ f̂′2, we have ψ(e−αaeα, b) ∈ f̂′2 and [ψ(e−αaeα, b)] = (1 − [α(a, b)])[ψ(a, b)].Indeed, when ψ(a, b) = (ad a)k(ad b)l([a, b]), one 
he
ks that the part of ψ(e−αaeα, b) 
on-taining α more than twi
e lies in f̂′′2 , and the part 
ontaining it on
e has the same 
lass as

(ad a)k(ad b)l([[−α, a], b]).If now f ∈ GT1(k), we have (f ∗ Φ)(a, b) = Φ(a, b)f(Φ−1(a, b)eaΦ(a, b), eb), so
[log(f ∗ Φ)(a, b)] = [log Φ(a, b)] + [log f(Φ−1(a, b)eaΦ(a, b), eb)]

= [log Φ(a, b)] + [log f(ea, eb)]− [log Φ(a, b)][log f(ea, eb)].so(15) 1− [log(f ∗ Φ)(a, b)] = (1− [log Φ(a, b)])(1 − [log f(ea, eb)]).



22 A. ALEKSEEV, B. ENRIQUEZ, AND C. TOROSSIANIf �x Φ0 ∈M1(k) and set Γf (u) := Γf∗Φ0(u)/ΓΦ0(u), then we get
1− [log f(ea, eb)] =

Γf (−a)Γf (−b)

Γf (−a− b)as wanted. Moreover, (15) implies that Γf∗Φ = ΓfΓΦ, whi
h also implies that f 7→ Γf is agroup morphism. �7. Dire
t 
onstru
tion of the map GT1(k)→ KV(k)We will now sket
h a proof of (f ∈ GT1(k)) ⇒ (αf ∈ KV(k)), independent of thenonemptiness of M1(k).7.1. A
tion of GT1(k) on 
ompleted braid groups. Let C be a b.m.
. We denote by
βX,Y : X⊗Y → Y ⊗X and aX,Y,Z : (X⊗Y )⊗Z → X⊗(Y ⊗Z) the braiding and asso
iativity
onstraints. For O ∈ Ob(PaB) of length n and any X1, ..., Xn ∈ Ob(C), we 
onstru
tthe tensor produ
t O(X1, ..., Xn) of X1, ..., Xn with parenthesization O. We say that C isprounipotent if for any X1, ..., Xn and any O, the image of PBn → AutC(O(X1, ..., Xn)) isprounipotent (it su�
es to require this for a given O). If C is a prounipotent b.m.
. and
f ∈ GT1(k), we 
onstru
t a new b.m.
. fC as follows: fC is the same as C at the levelof obje
ts and morphisms, the 
omposition and the tensor produ
t of morphisms are notmodi�ed, but the braiding and asso
iativity 
onstraints are modi�ed as follows:

β′
X,Y = βX,Y , a′X,Y,Z = aX,Y,Z ◦ f(βY XβXY , a

−1
X,Y,Z ◦ βZY βY Z ◦ aX,Y,Z).We then have f1(f2C) = f1∗f2C. Moreover, the a
tion of GT1(k) on BMC is fun
torial,so a tensor fun
tor φ : C → D and f ∈ GT1(k) give rise to fφ : fC → fD. Note thatfor O,O′ ∈ Ob(C), and under the identi�
ations fC(O,O′) = C(O,O′), fD(φ(O), φ(O′)) =

D(φ(O), φ(O′)), the map fφ(O,O′) : fC(O,O′)→ fD(φ(O), φ(O′)) 
oin
ides with φ(O,O′) :
C(O,O′)→ D(φ(O), φ(O′)).Let PaBk be the 
ompletion of PaB obtained by repla
ing ea
h group Bn by its 
omple-tion Bn(Sn,k) relative to the morphism Bn → Sn. By universal properties, we have a uniquemorphism φf : PaB → f

PaB whi
h is the identity on obje
ts. If then f1, f2 ∈ GT1(k), wehave(16) f1φf2 ◦ φf1 = φf1∗f2 ;indeed, both terms are tensor fun
torsPaBk → f1∗f2PaBk whi
h are the identity on obje
ts.If nowO ∈ Ob(PaB) has length n, φf gives rise to a group morphism φf (O) : PaBk(O)→
f
PaBk(O). We denote by

α̃O
f : Bn(Sn,k)→ Bn(Sn,k)the group endomorphism derived from φf (O) and the identi�
ationsPaBk(O) = f

PaBk(O) =
Bn(Sn,k). Identity (16) and the identi�
ation of f1α̃O

f2
with α̃O

f2
imply

α̃O
f2
◦ α̃O

f1
= α̃O

f1∗f2
,so we have a group antimorphism GT1(k)→ Aut(Bn(Sn,k)), f 7→ α̃O

f .It is easy to see that we have a 
ommutative diagram Bn(Sn,k)
α̃O

f
→ Bn(Sn,k)

ց ւ
Sn

so α̃O
frestri
ts to an automorphism α̃O

f ∈ Aut(PBn(k)).If nowO,O′ ∈ Ob(PaB) have length n, then canO,O′ ∈ PaBk(O,O′) is the morphism 
or-responding to the trivial braid. Then φf (canO,O′)◦can−1
O,O′ ∈ PaBk(O). Let fO,O′

∈ PBn(k)
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e the diagram PaB(O)
x 7→canO,O′ ◦x◦can−1

O,O′

→ PaB(O′)
ց ւ

Bn(Sn,k)
ommutes, we have(17) α̃O′

f = Inn(fO,O′

) ◦ α̃O
f .7.2. A
tions of GT1(k) on free groups. Let us index the generators of PBn(k) by xij ,

0 ≤ i < j ≤ n − 1. Re
all that the subgroup of PBn(k) generated by x01, ..., x0,n−1 isisomorphi
 to Fn−1(k). We set Xi = x0i for i = 1, ..., n− 1.Proposition 7.1. Ea
h α̃O
f restri
ts to an automorphism αO

f ∈ Aut(Fn−1(k)), su
h thatfor any i, αO
f (Xi) ∼ Xi.Proof. Let us index the letters of O by 0, ..., n − 1. For i = 1, ..., n − 1, let Oi be anobje
t of PaB of length n, in whi
h the letters i − 1 and i appear as ...(••)..... We have

Xi = (σ0...σi−2)
−1σ2

i−1σ0...σi−2. We have α̃O
f (σ0...σi−2) = σ0...σi−2 ·pi, where pi ∈ PBn(k).On the other hand, α̃O

f (σi−1) = fO,Oi α̃O
f (σi−1)(f

O,Oi)−1 and α̃O
f (σi−1) = σi−1 as Bn ≃

PaB(Oi) takes σi−1 to id⊗i−1
• ⊗β•,• ⊗ id⊗n−i−2

• . So
α̃O

f (σ2
i−1) = fO,Oiσ2

i−1(f
O,Oi)−1,with αO,Oi

f ∈ PBn(k). Then
α̃O

f (Xi) = (σ0...σi−2pi)
−1fO,Oiσ2

i−1(f
O,Oi)−1σ0...σi−2pi

= p−1
i (σ0...σi−2)

−1fO,Oi(σ0...σi−2) ·Xi · (same)
−1.

(18)As p−1
i (σ0...σi−2)

−1fO,Oi(σ0...σi−2) belongs to PBn(k), and as PBn(k) a
ts on Fn−1(k)by tangential automorphisms, we obtain that α̃O
f (Xi) lies in Fn−1(k) and is 
onjugated in

Fn−1(k) to Xi. �Similarly to Proposition 3.2, one 
an prove:Proposition 7.2. If O = • ⊗ Ō, where Ō ∈ Ob(PaB), then αO
f (X1...Xn−1) = X1...Xn−1.We then have

αO′

f = Ad(fO,O′

) ◦ αO
f ;this is an identity in Aut(Fn−1(k)), where Ad(αO,O′

f ) is not ne
essarily inner.We also re
ord the identities(19) µ̃O
f∗Φ = µ̃O

Φ ◦ α
O
f , µO

f∗Φ = µO
Φ ◦ α

O
f .7.3. The map GT1(k) → KV(k). Let us �x an element f ∈ GT1(k) and denote α̃O

f , αO
fsimply by α̃O, αO.As in Subse
tion 4.5, one proves that(20) PBn(k)

1,2,...,ĩi+1,...,n
→ PBn+1(k)

αO↓ ↓α
O(i)

PBn(k)
1,2,...,ĩi+1,...,n

→ PBn+1(k)
ommutes. Using Proposition A.3, one then proves(21) αO(i) = α1,...,ĩi+1,...,n
O ◦ αi,i+1

•(••).Similarly to Proposition 5.1, one proves that1) α•(••) = αf .2) f•((••)•),•(•(••)) = f(x12, x23).



24 A. ALEKSEEV, B. ENRIQUEZ, AND C. TOROSSIANAs in Subse
tion 5.1, one proves that this implies(22) Ad f(x12, x23) ◦ α
f12,3
f ◦ α1,2

f = α1,f23
f ◦ α2,3

f .As in Subse
tion 5.2, one 
an give three proofs of the fa
t that αf (XY ) = XY . Similarly toSubse
tion 5.3, one then proves that identity (22) then implies that J(αf ) is a δ̃-
oboundary.Let us explain this proof in some detail. Sin
e J(Ad f(x12, x23)) = 0 and J(α
f12,3
f ) =

J(αf )
f12,3, we get by applying J to (22)

Ad f(x12, x23) · J(αf )
f12,3 +

(
Ad f(x12, x23) ◦ α

f12,3
f

)
· J(αf )1,2 = J(αf )

f12,3 + J(αf )2,3.Applying the inverse of (22), we get
(α1,2

f )−1 · (α−1
f · J(αf ))

f12,3 + (α−1
f · J(αf ))1,2 = (α2,3

f )−1 · (α−1
f · J(αf ))1,f23 + (α−1

f · J(αf ))2,3Now αf (XY ) = XY implies that α1,2
f · t

f12,3 = t
f12,3 and similarly with 1, 2̃3, so δ̃(α−1

f ·

J(αf )) = 0. As T̂1
δ̃
→ T̂2 → ... is a
y
li
 in degree 2, there exists β ∈ T̂1 with valuation

≥ 2 su
h that α−1
f · J(αf ) = δ̃(β), so J(αf ) = αf · δ̃(β). Now αf (XY ) = XY , αf (X) ∼ X ,

αf (Y ) ∼ Y imply that αf · δ̃(β) = δ̃(β), so J(αf ) = δ̃(β). It follows that J(αf ) has the form
δ̃(β) = 〈β(log(exey))− β(x) − β(y)〉.Remark 7.3. (22) 
an also be proved dire
tly, 
he
king the identity on ea
h of the generatorsof F3(k) and using only the duality, hexagon and pentagon relations. This proof then extendsto the pro�nite and pro-l 
ases.8. The Ja
obians of µΦ,O and αO

f8.1. Teles
opi
 formulas. If O ∈ Ob(PaB) has the form O = • ⊗O′, with |O′| = n, thenone proves by using (4) that µO expresses dire
tly in terms of µΦ, for example
µ•((((••)(••))(•(••)))(••)) = µ1234567,89

Φ µ1234,567
Φ µ8,9

Φ µ12,34
Φ µ5,67

Φ µ1,2
Φ µ3,4

Φ µ6,7
Φ .The general formula is

µ•⊗O′ =
∏

n≥0

∏

ν∈N(T ′),d(ν)=n

µ
L(ν),R(ν)
Φ ;here T ′ is the binary planar rooted tree underlying O′; N(T ′) is the set of its nodes; d(ν)is the degree of ν (distan
e to the root of the tree); L(ν), R(ν) is the set of left and rightleaves of ν (these are disjoints subsets of {1, ..., n}). The �rst produ
t is taken a

ording toin
reasing values of n (the order in the se
ond produ
t does not matter as the arguments ofthis produ
t 
ommute with ea
h other). Here is the tree 
orresponding to the above example(Figure 3):

8 9

764321

5
degree 3

degree 0

degree 1

degree 2Figure 3. There are 8 nodes
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α•⊗O′

f =
∏

n≥0

∏

ν∈N(T ′),d(ν)=n

α
L̃(ν),R̃(ν)
f .8.2. Computation of Ja
obians. Let µn := µ•(•...(••)). Then:Proposition 8.1. J(µn) = 〈

∑n
i=1 log ΓΦ(xi)− log ΓΦ(

∑n
i=1 xi)〉.(We identi�ed µn with its 
omposition with exi 7→ Xi, whi
h belongs to TAutn.)Proof. We have µn = µ1,2...n

Φ ◦µ2,3...n
Φ ◦...◦µn−1,n

Φ . One then proves by des
ending indu
tionon k that J(µk,k+1...n
Φ ◦ ... ◦ µn−1,n

Φ ) = 〈
∑n

i=k log ΓΦ(xi) − log ΓΦ(
∑n

i=k xi)〉, using the fa
tthat the a
tion of µk,k+1...n
Φ on the various 〈log ΓΦ(xi)〉 as well as on 〈log ΓΦ(

∑n
i=k xi)〉 istrivial. �If now O ∈ Ob(PaB) is arbitrary with with |O| = n+ 1, then:Proposition 8.2. J(µΦ,O) = J(µn) = 〈

∑n
i=1 log ΓΦ(xi)− log ΓΦ(

∑n
i=1 xi)〉.Proof. We have µO = Ad ΦOn,O ◦ µn, where On = •(...(••)). We then use the 
o
y
leproperty of J , the above formula for J(µn), the fa
t that J(Ad g) = 0 for g ∈ exp(̂tn+1), andthe following lemma:Lemma 8.3. If g ∈ exp(̂tn+1), then (Ad g)(x1 + ...+ xn) ∼ x1 + ...+ xn.Proof of Lemma. De
ompose a ∈ tn+1 as a0 + a1,2,...,n

1 , with a0 ∈ fn and a1 ∈ tn (themap a1 7→ a1,2,...,n
1 is the inje
tion tn → tn+1, tij 7→ tij). Then [tij , x1 + ... + xn] = 0 for

i, j ∈ {1, ..., n}, so [a1,2,...,n
1 , x1 + ... + xn] = 0, so [a, x1 + ... + xn] = [a0, x1 + ... + xn]. Itfollows that if g ∈ exp(̂tn+1), there exists xg ∈ exp(̂fn) su
h that (Ad g)(x1 + ... + xn) =

g(x1 + ...+ xn)g−1. � �We then have:Proposition 8.4. J(αO
f ) = 〈

∑n
i=1 log Γf (logXi)− log Γf (log

∏n
i=1Xi)〉.Proof. Fix Φ ∈ M1(k). We have µO

f∗Φ = µO
Φ ◦ α

O
f , so J(µO

f∗Φ) = J(µO
Φ) + µO

Φ ◦ J(α)O
f . Itfollows that µO

Φ ◦J(α)O
f = 〈

∑n
i=1 log Γf(xi)− log Γf (

∑n
i=1 xi)〉. The result then follows from

µO
Phi(Xi) ∼ exi , µO

Φ(X1...Xn) ∼ ex1+...+xn. �Remark 8.5. In [AT℄, the Lie subalgebra sdern ⊂ tdern of spe
ial derivations (normalizedspe
ial in the terms of Ihara) was introdu
ed: sdern = {u ∈ tdern|u(x1 + ... + xn) = 0}.Let ˜sdern be the intermediate Lie algebra ˜sdern = {u ∈ tdern|∃u0 ∈ fn−1|u(x1 + ... + xn) =
[u0, x1 + ... + xn]} (spe
ial derivations in Ihara's terms). So sdern ⊂ ˜sdern ⊂ tdern. ThenLemma 8.3 says that we have a diagram

tn → sdern

↓ ↓
tn+1 → ˜sdern →֒ tdernRemark 8.6. Set SolKVn(k) := {µn ∈ TAutn |µn(ex1 ...exn) = ex1+...+xn and ∃r ∈ u2

k[[u]]|J(µn) =
〈r(

∑
i xi) −

∑
i r(xi)〉}. This is a torsor under the a
tion of the groups KVn(k) := {αn ∈

TAutn |αn(ex1 ...exn) = ex1 ...exn and ∃σ ∈ u2
k[[u]]|J(α) = 〈σ(log ex1 ...exn) −

∑
i σ(xi)〉}and KRVn(k) de�ned similarly (repla
ing ex1 ...exn by ex1+...+xn). These are prounipo-tent groups; the Lie algebra of KRVn(k) is krvn := {u ∈ tdern|a(

∑
i xi) = 0 and ∃s ∈

u2
k[[u]]|j(a) = 〈s(

∑
i xi)−

∑
i s(xi)〉}. It 
ontains as a Lie subalgebra krv0

n := {a ∈ krvn|s =
0}, whi
h is denoted kvn in [AT℄. One 
an prove that if |O′| = n and O = • ⊗O′, the map
M1(k)→ SolKVn(k), Φ 7→ µΦ,O is a morphism of torsors.



26 A. ALEKSEEV, B. ENRIQUEZ, AND C. TOROSSIAN9. Analyti
 aspe
tsIn this se
tion, the base �eld k is R or C.9.1. Analyti
 germs. We set R+{{x}} := {f ∈ R+[[x]]|f has posititive radius of 
onvergen
e}and R+{{x}}0 := {f ∈ R+{{x}}|f(0) = 0}. If f, g ∈ R+[[r]], we write f � g i� g−f ∈ R+[[r]].We de�ne f � g similarly when f, g ∈ R+[[r1, ..., rn]].Let V,E be �nite dimensional ve
tor spa
es and let |.|V , |.|E be norms on V,E. Thespa
e of E-valued formal series on V is E[[V ]] = {f =
∑

n≥0 fn, fn ∈ Sn(V ∗) ⊗ E}.For fn ∈ Sn(V ∗) ⊗ E, viewed as an homogeneous polynomial V → E, we set |fn| :=
supv 6=0(|fn(v)|E/|v|nV ). An analyti
 germ on V (at the neighborhood of 0) is a series
f ∈ E[[V ]], su
h that |f |(r) :=

∑
n≥0 |fn|rn ∈ R+{{r}}. We denote by E{{V }} ⊂ E[[V ]]the subspa
e of analyti
 germs, and by E{{V }}0 ⊂ E[[V ]]0 the subspa
e de�ned by f0 = 0.If f ∈ E{{V }} and α =

∑
n≥0 αnr

n ∈ R+[[r]]0, we say that α is a dominating series for fis |fn| ≤ αn for any n; we write this as |f(v)|E � α(|v|V ).If V1, ..., Vk are �nite dimensional ve
tor spa
es with norms |.|V1 , ..., |.|Vk
, then we equip

V1⊕...⊕Vk with the norm |(v1, ..., vk)| := supk |vi|Vi
. If f is an analyti
 germ V1⊕...⊕Vk → E,we de
ompose f =

∑
n∈Nk fn, where fn : V1 × ... × Vk → E is the n-multihomogeneous
omponent of f . We then set

|fn| := sup(x1,...,xk)∈
Q

i
(Vi−{0}) |fn(x1, ..., xk)|E/|x1|

n1

V1
...|xk|

nk

Vk
.Then f is an analyti
 germ i� |f |(r1, ..., rn) :=

∑
n
|fn|r

n1
1 ...rnk

k ∈ R+[[r1, ..., rk]] 
onverges ina polydis
. If α =
∑

n1,...,nk≥0 αn1,...,nk
rn1
1 ...rnk

k ∈ R+[[r1, ..., rk]], we write |f(v1, ..., vk)|E �

α(|v1|V1 , ..., |vk|Vk
) if for ea
h n, |fn(v1, ..., vk)|E ≤ αn(|v1|V1 , ..., |vk|Vk

).Let now g be a �nite dimensional Lie algebra; let |.| be a norm on g; let M > 0 be su
hthat the identity |[x, y]| ≤M |x||y| holds.The spe
ialization to g of the Campbell�Baker�Hausdor� series is a series x∗y = cbh(x, y) ∈
g[[g× g]]0.Lemma 9.1. 1) The CBH series is an analyti
 germ g×g→ g; we have |x∗y| � 1

M f(M(|x|+

|y|)), where f(u) =
∫ u

0 −
ln(2−ev)

v dv.2) g× g→ g, (x, y) 7→ eadx(y) is an analyti
 germ, and |eadx(y)| � eM|x||y|.Proof. 1) is proved as in [Bk℄, not making use of the �nal majorization 1
r+s ≤ 1. UsingDynkin's formula, one 
an prove that 2) follows from |(adx)n(y)| ≤Mn|x|n|y|. �9.2. TAutan

n (g) and tderan
n (g). We set TAutn(g) := {(a1, ..., an)|ai ∈ g[[gn]]0} and de�ne onthis set a produ
t by (a1, ..., an)(b1, ..., bn) := (c1, ..., cn), where

ci(x1, ..., xn) := bi(e
ad a1(x1,...,xn)(x1), ..., e

ad an(x1,...,xn)(xn)) ∗ ai(x1, ..., xn).This equips TAutn(g) with a group stru
ture. We set TAutan
n (g) := {(a1, ..., an)|ai ∈

g{{gn}}0}.Proposition 9.2. TAutan
n (g) is a subgroup of TAutn(g).Proof. Let (a1, .., an) and (b1, ..., bn) belong to TAutan

n (g). Let α(r), β(r) ∈ R+{{r}}0be germs su
h that the identities |ai(x1, ..., xn)| � α(supi |xi|), |bi(x1, ..., xn)| � β(supi |xi|)hold. Then
|ci(x1, ..., xn)| � fM (|ai(x1, ..., xn)|+ |bi(e

ad a1(x1), ..., e
ad an(xn))|)

� fM (α(supi |xi|) + β(eMα(supi |xi|) supi |xi|)) = γ(supi |xi|),where fM (u) = 1
M f(Mu) and γ(r) = fM (α(r) + eMα(r)β(r)) has nonzero radius of 
onver-gen
e. Here we use the 
ompatibility of norms with 
omposition: namely, if f ∈ E[[V1 ×

.. × Vn]]0 and gi ∈ Vi[[W ]]0, with |f(v1, ..., vn)| � α(|v1|, ..., |vn|) and |gi(w)| � βi(|w|),then h := f ∈ (g1, ..., gn) ∈ E[[W ]]0 and |h(w)| � α ◦ (β1, ..., βn)(|w|). We also use the
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reasing properties of elements of R+[[r1, ..., rn]]0 (i.e., if F ∈ R+[[u1, ..., uk]]0 and
ui, u

′
i ∈ R+[[r1, ..., rl]]0 with ui � u′i, then F (u1, ...) � F (u′1, ...). So (a1, ..., an)(b1, ..., bn) ∈

TAutan
n (g).If now (a1, ..., an) ∈ TAutan

n (g), then its inverse (b1, ..., bn) in TAutn(g) is uniquely deter-mined by the identities
bi(x1, ..., xn) = −ai(e

ad b1(x1,...,xn)(x1), ...., e
ad bn(x1,...,xn)(xn)).Let us show that ea
h bi(x1, ..., xn) is an analyti
 germ. For this, we de�ne indu
tively thesequen
e b(k) = (b

(k)
1 , ..., b

(k)
n ) by b(0) = (0, .., 0), and

b
(k+1)
i (x1, ..., xn) = −ai(e

ad b
(k)
1 (x1,...,xn)(x1), ...., e

ad b(k)
n (x1,...,xn)(xn)).One 
he
ks that b(k) = b(k−1) + O(xk), so the sequen
e (b(k))k≥0 
onverges in the formalseries topology; the limit b is then the inverse of a = (a1, ..., an).Let us now set βk := supi |b

(k)
i | (if ui(r) =

∑
k≥0 ui,kr

k ∈ R+[[r]] is a �nite family, we set
(supi ui)(r) :=

∑
k≥0(supi ui,k)rk). We then have

|b
(k+1)
i (x1, ..., xn)| � α(supi |e

ad b
(k)
i (x1,...,xn)(xi)|) � α(eMβk(supi |xi|) supi |xi|),so βk+1(r) � α(eβk(r)r).We now de�ne a sequen
e (γk)k≥0 of elements of R+[[r]]0 by γ0 = 0,

γk+1(r) = α(eMγk(r)r).As the exponential fun
tion, mutipli
ation by r and α are non-de
reasing, we have βk � γk.On the other hand, we have γk(r) = γk−1(r) + O(rk), so the sequen
e (γk)k 
onverges in
R+[[r]]0 (one also 
he
ks that this sequen
e is non-de
reasing). Its limit γ then satis�es(23) γ(r) = α(eMγ(r)r).It is easy to show that (23) determines γ(r) ∈ R[[r]]0 uniquely. On the other hand, thefun
tion (γ, r) 7→ γ − α(eMγr) =: F (γ, r) is analyti
 at the neighborhood of (0, 0), withdi�erential at this point ∂γF (0, 0)dγ + ∂rF (0, 0)dr = dγ −Mα′(0)dr. We may then applythe impli
it fun
tion theorem and use the fa
t that the dγ-
omponent of dF (0, 0) is nonzeroto derive the existen
e of an analyti
 fun
tion γan(r) satisfying (23). By the uniqueness ofsolutions of (23), we get that the expansion of γan is γ, so γ ∈ R+{{r}}0.Now |b(k)

i (x1, ..., xn)| � βk(supi |xi|) � γk(supi |xi|) � γ(supi |xi|), so by taking the limit
k →∞, |bi(x1, ..., xk)| � γ(supi |xi|), whi
h implies that bi ∈ g{{gn}}0, as wanted. �A

ording to [AT℄, we have a bije
tion

κ : TAutn → tdern, g 7→ ℓ− gℓg−1,where ℓ is the derivation given by xi 7→ xi.Set tdern(g) := {(u1, ..., un)|ui(x1, ..., xn) ∈ g[[gn]]0}, and tderan
n (g) := {(u1, ..., un)|ui ∈

g{{gn}}0} ⊂ tdern(g). We have maps TAutn → TAutn(g), tdern → tdern(g) indu
ed by thespe
ialization of formal series.Lemma 9.3. 1) There exists a map κg : TAutn(g)→ tdern(g), su
h that the diagram
TAutn

κ
→ tdern

↓ ↓

TAutn(g)
κg

→ tdern(g)
ommutes.2) This map restri
ts to a map κan
g : TAutan

n (g)→ tderan
n (g).



28 A. ALEKSEEV, B. ENRIQUEZ, AND C. TOROSSIANProof. 1) If ai, bi ∈ f̂n are su
h that g = [[eb1 , ..., ebn ]], g−1 = [[ea1 , ..., ean ]], then κ(g) =
u = [[u1, ..., un]], with

ui(x1, ..., xn) = (
1 − eadai

adai
(ȧi))(e

ad b1(x1,...,xn)(x1), ..., e
ad bn(x1,...,xn)(xn))and ȧi = ℓ(ai) = d

dt |t=1
ai(tx1, ..., txn). So we de�ne κg by the same formula, where ȧi is nowde�ned as d

dt |t=1
ai(tx1, ..., txn) (or ∑

k≥0 ka
k
i , where ak

i is the degree n part of ai).2) If the fun
tions ai, bi are analyti
 germs, then so is ȧi and therefore also ea
h ui. �Re
all also from [AT℄ that if µ ∈ TAut2, µ(x∗y) = x+y and J(µ) = 〈r(x)+r(y)−r(x+y)〉(i.e., µ ∈ SolKV(k)), then u := −κ(µ−1) = [[A(x, y), B(x, y)]] satis�es:(KV1) x+ y − y ∗ x = (1− e− ad x)(A(x, y)) + (ead y − 1)(B(x, y)),(KV3) j(u) = 〈φ(x) + φ(y)− φ(x ∗ y)〉, where φ(t) = tr′(t).Let ΦKZ be the KZ asso
iator, Φ̃KZ(a, b) := ΦKZ(a/(2π i), b/(2π i)) ∈ M1(C) and µKZ :=
µΦ̃KZ

. Let uKZ := κ(µ−1
KZ). Then J(µKZ) = 〈rKZ(x) + rKZ(y)− rKZ(x ∗ y)〉, where rKZ(u) =

−
∑

n≥2(2π i)−nζ(n)un/n, therefore
j(uKZ) = 〈φKZ(x) + φKZ(y)− φKZ(x ∗ y)〉,where φKZ(u) = −

∑
n≥2(2π i)−nζ(n)un. Now the real part of this fun
tion (obtained bytaking the real part of the 
oe�
ients of un) is

φR
KZ(u) =

1

2
(

u

eu − 1
− 1 +

u

2
).Let us now set uR := [[AR(x, y), BR(x, y)]], where the real part is taken with respe
t to thenatural real stru
ture on fC2 . Then by the linearity of (KV1), (KV3), we have:

(KV1) x+ y − y ∗ x = (1− e− ad x)(AR(x, y)) + (ead y − 1)(BR(x, y))

(KV3) j(uR) =
1

2
〈

x

ex − 1
+

y

ey − 1
−

x ∗ y

ex∗y − 1
− 1〉.9.3. Analyti
 aspe
ts to the KV 
onje
ture (proof of Theorem 2.8). Re
all that

log Φ̃KZ ∈ f̂2. We denote the spe
ialization of this series to the Lie algebra g as (log Φ̃KZ)g ∈
g[[g2]]0.Proposition 9.4. (log Φ̃KZ)g is an analyti
 germ, i.e., (log Φ̃KZ)g ∈ g{{g2}}0.Proof. Re
all that A2 = U(f2) is the free asso
iative algebra in a, b. For x ∈ A2, set

|x|A2 := supN≥1 supm1,m2∈MN (C) ||x(m1,m2)||.Here ||.|| is an algebra norm on MN (C). Then |x|A2 is ≤ ∑
I∈⊔n≥0{0,1}n |xI |, where x =∑

I xIeI , and for I = (i1, ..., in), eI = ei1 ...ein
, e0 = a, e1 = b. It follows from the Amitsur�Levitsky theorem ([AL℄) that (|x|A2 = 0)⇒ (x = 0); indeed, by this theorem, x(m1,m2) = 0for m1,m2 ∈MN(C) implies: (a) that x is in the 2-sided ideal generated by ab−ba if N = 1;(b) that x = 0 if N > 1. It follows that |.|A2 is an algebra norm9 on A2, in parti
ular

|xy|A2 ≤ |x|A2 |y|A2 .We then de�ne a ve
tor spa
e norm |.|f2 on f2 by |x|f2 := |x|A2 ; we have |[x, y]f2 ≤
2|x|f2 |y|f2 .For n = (n1, ..., nd) ∈ Nd, and f a fun
tion on (f2)

d (resp., Rd), we denote by f(ξ1, ..., ξd)n(resp., f(t1, ..., td)n) the n-multihomogeneous part of f , whi
h we view as a multihomoge-neous polynomial on (f2)
d (resp., Rd).Lemma 9.5. For any n, we have the identity

| log(eξ1 ...eξd)n|f2 ≤ ((log(2− et1+...+td)−1)n)t1=|ξ1|f2 ,...,td=|ξd|f2
.9We will not use (|x|A2

= 0) ⇒ (x = 0), so our proof is independent of the Amitsur�Levitsky theorem.
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1 ...ξnd

d |A2 ≤ |ξ1|
n1

f2
...|ξd|

nd

f2
so

|(eξ1 ...eξd − 1)n|A2 ≤ ((et1+...+td − 1)n)t1=|ξ1|f2 ,...,td=|ξd|f2
.Then log(eξ1 ...eξd)n =

∑
k≥1

(−1)k+1

k

∑
(n1,...,nk)|n1+...+nk=n

(eξ1 ...eξd−1)n1 ...(e
ξ1 ...eξd−1)nkso

| log(eξ1 ...eξd)n|A2 ≤
( ∑

k≥1

1

k

∑

n1+...+nk=n

(et1+...+td − 1)n1 ...(e
t1+...+td − 1)nd

)
t1=|ξ1|f2 ,...,td=|ξd|f2

=
( ∑

k≥1

1

k
((et1+...+td − 1)k)n

)
t1=|ξ1|f2 ,...,td=|ξd|f2

= ((log(2− et1+...+td)−1)n)t1=|ξ1|f2 ,...,td=|ξd|f2
.

�Let a(t) be an fun
tion [0, 1]→ f̂2 of the form a(t) =
∑

k≥1 ak(t), where ak(t) ∈ f2[k] (here
k is the total degree in a, b) and ∫ 1

0
|ak(t)|f2dt <∞. Let u0, u1 be solutions of u′(t) = a(t)u(t)with u0(0) = u1(1) = 1, and U := u−1

1 u0.Lemma 9.6. For n ≥ 1, let (logU)n the degree n (in a, b) part of logU . Then
∑

n≥1

|(logU)n|f2r
n � log(2− e

P

k≥1 rk
R 1
0
|ak(t)|f2dt)−1.Proof of Lemma. Let Lie(n) be the multilinear part of fn in the generators x1, ..., xn. Wedenote by wn(x1, ..., xn) ∈ Lie(n) the multilinear part of log(ex1 ...exn).Let now αn be the 
oe�
ient of t1...tn in the expansion of log(2 − et1+...+tn)−1 (this isalso the nth derivative at t = 0 of log(2 − et)−1). Spe
ializing Lemma 9.5 for n = (1, .., 1),we get the identity

|wn(ξ1, ..., ξn)|f2 ≤ αn|ξ1|f2 ...|ξn|f2for ξ1, ..., ξn ∈ f2.Now logU expands as
logU =

∑

n≥0

∫

0<t1<...<tn<1

wn(a(t1), ..., a(tn))dt1...dtn(see e.g. [EG℄). It follows that
(logU)k =

∑

n≥0

∑

k1,...,kn|
P

i ki=k

∫

0<t1<...<tn<1

wn(ak1(t1), ..., akn
(tn))dt1...dtnand therefore

|(logU)k|f2 ≤
∑

n≥0

αn

∑

k1,...,kn|
P

i
ki=k

∫

0<t1<...<tn<1

|ak1(t1)|f2 ...|akn
(tn)|fn

dt1...dtn.Now the generating series for the r.h.s. is log(2− e
P

k≥1 rk
R

1
0
|ak(t)|f2dt)−1, proving the result.

�A

ording to [Dr℄, Se
tion 2, if we set
a(t) :=

∑

k≥0,l≥1

1

k!l!(2π i)k+l+1

(− log(1− t))k(− log t)l

t− 1
(ad b)k(ada)l(b),then Φ̃KZ = U . We have |(ad b)k(ada)l(b)|f2 ≤ k + l + 2 ≤ 2k+l+1, so

|an(t)| ≤
∑

k≥0,l≥1,k+l+1=n

1

πk+l+1k!l!

(− log(1− t))k(− log t)l

1− t



30 A. ALEKSEEV, B. ENRIQUEZ, AND C. TOROSSIANThen we have the inequality of formal series in r
∑

n≥1

rn

∫ 1

0

|an(t)|f2dt �

∫ 1

0

∑

k≥0,l≥1

rk+l+1

πk+l+1k!l!

(− log(1− t))k(− log t)l

1− t
dt

=
r

π

∫ 1

0

(1− t)−1− r
π (t−

r
π − 1)dt.Now the identity ∫ 1

0 t
a(1 − t)bdt = Γ(a+1)Γ(b+1)

Γ(a+b+2) , valid for ℜ(a),ℜ(b) > −1, implies that if
ℜ(r) < 0, then

r

π

∫ 1

0

(1− t)−1− r
π (t−

r
π − 1)dt =

1

2

(
1−

Γ(1− 2r)2

Γ(1− 4r)

)
.This implies that the radius of 
onvergen
e of r

π

∫ 1

0
(1 − t)−1− r

π (t−
r
π − 1)dt is 1/4, so thisseries belongs to R+{{r}}0. Plugging this in Lemma 9.6, we get

∑

n≥0

|(log Φ̃KZ)n|f2r
n � log(2− e

1
2

(
1−Γ(1−2r)2

Γ(1−4r)

)
)−1,where the series in the r.h.s. lies in R+{{r}}0 (being a 
omposition of two series in R+{{r}}0).Let us now prove that (log Φ̃KZ)g ∈ g{{g2}}0 is an analyti
 germ. By Ado's theorem, thereexists a inje
tive morphism ρ : g→MN(k), where k = R or C, hen
e an inje
tive morphism

ρ̃ : g → MN(C). Equip g with the norm |x|g := ||ρ̃(x)||. We re
all that all the norms on gare equivalent, so it will su�
e to prove analyti
ity w.r.t. |.|g.The degree n part of the series (log Φ̃KZ)g is the spe
ialization to g of (log Φ̃KZ)n. Now if
ψ ∈ f2[n] and ψg : g×g→ g is its spe
ialization to g, we have |ψg(x, y)|g = ||ψ(ρ̃(x), ρ̃(y))|| ≤
|ψ|f2 sup(||ρ̃(x)||, ||ρ̃(y)||)n = |ψ|f2 sup(|x|g, |y|g)n, therefore |ψg| ≤ |ψ|f2 . We then have

∑

n≥0

|(log Φ̃KZ)g
n|r

n �
∑

n≥0

|(log Φ̃KZ)n|f2r
n � log(2− e

1
2

(
1−Γ(1−2r)2

Γ(1−4r)

)
)−1;together with the fa
t that the series in the right has positive radius of 
onvergen
e, thisimplies the analyti
ity of the series (log Φ̃KZ)g. �Proposition 9.4, together with the lo
al analyti
ity of the CBH series, implies that thespe
ialization of µΦ̃KZ

belongs to TAutan
2 (g). It follows that A(x, y), B(x, y) are analyti
germs, and so(KV2) (AR, BR) is an analyti
 germ g2 → g2.All this implies that (AR, BR) is a solution of the `original' KV 
onje
ture (as formulatedin [KV℄) and proves 1) in Theorem 2.8.Let us now prove Theorem 2.8, 2). One 
he
ks easily that if (A,B) is a solution of the`original' KV 
onje
ture, then (As, Bs) := (A + s(log(exey) − x), B + s(log(exey) − y)) isa family of solutions. In fa
t, if µ ∈ SolKV(k) and [[A,B]] = −κ(µ−1), then [[As, Bs]] =

−κ(µ−1
−s), where µs := Inn(es(x+y)) ◦ µ; this 
orresponds to the a
tion of `trivial', degree 1element of krv on SolKV (see[AT℄).Finally, let us prove Theorem 2.8, 3). Let σ be the antilinear automorphism of f̂2 su
h that

σ(x) = −y, σ(y) = −x. The series ΦKZ(a, b) is real, therefore Φ̃KZ(a, b) = Φ̃KZ(−a,−b) (thebar denotes the 
omplex 
onjugation). This implies that µKZ ◦ σ = Inn(e−(x+y)/2) ◦ σ ◦µKZ.Using σ ◦ ℓ ◦ σ−1 = ℓ and ℓ(x+ y) = x+ y, we get
(µKZ ◦ σ ◦ µ

−1
KZ) ◦ ℓ ◦ (µKZ ◦ σ ◦ µ

−1
KZ)−1 = ℓ+ inn(

1

2
(x+ y)),where inn(x+y) is the inner derivation z 7→ [x+y, z] of f̂2. Using now µ−1

KZ(x+y) = log(exey),we get
(σ ◦ µ−1

KZ) ◦ ℓ ◦ (σ ◦ µ−1
KZ)−1 = µ−1

KZ ◦ ℓ ◦ µKZ + inn(
1

2
log(exey)).
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e σ ◦ ℓ ◦ σ−1 = ℓ, µ−1 ◦ ℓ ◦ µ− ℓ = −[[AKZ, BKZ]] and inn(1
2 log(exey)) = [[12 (log(exey)−

x), 1
2 (log(exey)− y)]]

σ ◦ [[AKZ, BKZ]] ◦ σ−1 = [[AKZ, BKZ]]− [[
1

2
(log(exey)− x),

1

2
(log(exey)− y)]].This implies

(BKZ(−y,−x), AKZ(−y,−x)) = (AKZ(x, y), BKZ(x, y))−(
1

2
(log(exey)−x),

1

2
(log(exey)−y)).If now (A′, B′) := (AKZ, BKZ)− 1

4 (log(exey)− x, log(exey)− y), this implies
(B′(−y,−x), A′(−y,−x)) = (A′(x, y), B′(x, y)),whi
h by taking real parts implies (B−1/4(−y,−x), A−1/4(−y,−x)) = (A−1/4(x, y), B−1/4(x, y)),proving Theorem 2.8, 3).Appendix A. Results on 
entralizersA.1. The 
entralizer of tij in tn.Proposition A.1. Let i < j ∈ [n]. If x ∈ tn is su
h that [x, tij ] = 0, then there exists λ ∈ kand y ∈ tn−1 su
h that x = λtij + yij,1,2,...,̌i,...,ǰ,...,n.Proof. We may and will assume that i = 1, j = 2. We then prove the result by indu
tionon n. It is obvious when n = 2. Assume that it has been proved at step n−1 and let us proveit at step n. We have tn = tn−1⊕ fn−1, where tn−1 is the Lie subalgebra generated by the tij ,

i 6= j ∈ {1, ..., n− 1} and fn−1 is freely generated by the t1n, ..., tn−1,n. Both tn−1 and fn−1are Lie subalgebras of tn, stable under the inner derivation [t12,−]. Then if x ∈ tn is su
hthat [t12, x] = 0, we de
ompose x = x′ + f , with x′ ∈ tn−1, f ∈ fn−1, [t12, x
′] = [t12, f ] = 0.By the indu
tion hypothesis, we have x′ = λt12 + (y′)12,3,...,n−1, where y′ ∈ tn−2 and λ ∈ k.Let us set xi = tin for i = 1, ..., n − 1. The derivation [t12,−] of fn−1 is given by

x1 7→ [x1, x2], x2 7→ [x2, x1], xi 7→ 0 for i > 2. In terms of generators y1 = x1, y2 = x1 + x2,
y3 = x3..., yn−1 = xn−1, it is given by y1 7→ [y1, y2], yi 7→ 0 for i > 1.Lemma A.2. The kernel of the derivation y1 7→ [y1, y2], yi 7→ 0 for i > 1 of fn−1 
oin
ideswith the Lie subalgebra fn−2 ⊂ fn−1 generated by y2, ..., yn−1.Proof of Lemma. Let us prove that the kernel of the indu
ed derivation of U(fn−1) is
U(fn−2). We have a linear isomorphism U(fn−1) ≃ ⊕k≥1U(fn−2)

⊗k, whose inverse takes
u1⊗ ...⊗uk to u1y1u2y1...y1uk. The derivation [t12,−] of U(fn−1) is then transported to thedire
t sum of the endomorphisms of U(fn−2)

⊗k(24) u 7→ (y
(2)
2 + ...+ y

(k)
2 )u− u(y

(1)
2 + ...+ y

(k−1)
2 )(this is 0 of k = 1; y(i)

2 = 1⊗i−1 ⊗ y2 ⊗ 1⊗k−i; we make use of the algebra stru
ture of
U(fn−2)

⊗k). Ea
h of these endomorphisms has degree 1 for the �ltration of U(fn−2)
⊗kindu
ed by the PBW �ltration of U(fn−2) (the part of degree≤ d of U(fn−2) for this �ltration
onsists of 
ombinations of produ
ts of ≤ d elements of fn−2) and the asso
iated gradedendomorphism of S(fn−2)

⊗k is the multipli
ation by y(k)
2 − y

(1)
2 , whi
h is inje
tive if k ≥ 1,so (24) is inje
tive for k ≥ 1; the kernel of the dire
t sum of maps (24) therefore 
oin
ideswith the degree 1 part U(fn−2), whi
h transports to U(fn−2) ⊂ U(fn−1). So the kernel ofthe derivation [t12,−] of U(fn−1) is U(fn−2). The kernel of the derivation [t12,−] of fn−1 isthen fn−1 ∩ U(fn−2) = fn−2. �End of proof of Proposition A.1. It follows that f expresses as P (t1n + t2n, t3n, ..., tn−1,n).Then if we set f ′ := P (t1,n−1, ..., tn−2,n−1), we get f = (f ′)12,3,...,n so x = x′ + f = λt12 +

((y′)1,2,...,n−1 + f ′)12,3,...,n, as wanted. �
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entralizer of xij in PBn.Proposition A.3. If g ∈ PBn(k) 
ommutes with x12, then there exists λ ∈ k and h ∈

PBn−1(k) su
h that g = xλ
12h

f12,3,...,n.Sin
e xij is 
onjugated to x12, it is easy to derive from this the 
entralizer of xij in PBn(k).Proof. Note that x12 
ommutes with the image of PBn−1(k) → PBn(k), h 7→ h
f12,3,...,n,so that U0 := {xλ

12h
f12,3,...,n|h ∈ PBn−1(k), λ ∈ k} is an algebrai
 subgroup of PBn(k). Let

U ⊂ PBn(k) be the 
entralizer of x12; then U0 ⊂ U , and we need to prove that U0 = U .We have U0 = exp(u0), U = exp(u), where u0 = k log x12⊕Im(pbn−1

f12,3,...,n
→ pbn) and u =

{x ∈ pbn|[log x12, x] = 0}, where pbn := Lie PBn(k). Then the lower 
entral series de�nes a
omplete de
reasing �ltration of pbn, with F 1pbn = pbn and F i+1pbn = [pbn, F
ipbn]. Theasso
iated graded Lie algebra is tn, i.e., tn = ⊕i≥1tn[i] = ⊕i≥1F

ipbn/F
i+1pbn.Set F iu := u ∩ F ipbn, F iu0 := u0 ∩ F ipbn. We will prove that the images of F iu0 and

F iu in tn[i] 
oin
ide. Clearly, Im(F iu0 → tn[i]) ⊂ Im(F iu→ tn[i]).Conversely, proje
ting the identity [log x12, x] = 0 modulo F i+1pbn, we get(25) Im(F iu→ tn[i]) ⊂ {x ∈ tn[i]|[t12, x] = 0},and sin
e x 7→ x
f12,...,n takes F ipbn−1 to F ipbn, we have (F ipbn−1)

f12,...,n ⊂ F iu0 if i > 1 and
(F 1pbn−1)

f12,...,n ⊕ k log x12 ⊂ F 1u0; proje
ting these in
lusions, modulo F i+1pbn, we get(26)
Im(F iu0 → tn[i]) ⊃ tn−1[i]

12,...,n if i > 1 and Im(F 1u0 → tn[i]) ⊃ tn−1[1]12,...,n ⊕ kt12.Using (25), (26) and Proposition A.1, we get Im(F iu→ tn[i]) ⊂ Im(F iu0 → tn[i]). It followsthat these spa
es are equal, whi
h implies (as both u0 and u are 
losed for the topology of
pbn) that u0 = u. So U0 = U . �Remark A.4. One 
an also prove Proposition A.3 similarly to Proposition A.1, by indu
-tion on n and using the fa
t that the automorphism Adx12 of the topologi
ally free groupgenerated by the xin identi�es with the automorphism exp(ad t12) of the topologi
ally freeLie algebra generated by the tin (using the identi�
ation (x1n, x1nx2n, x3n, ..., xn−1,n) ↔
(et1n , et1n+t2n , et3n , ..., etn−1,n)). Referen
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